| 1 |  |
| :--- | :--- | :--- |
| List three technical specifications relating to the selection of a wall mounted light <br> switch when recording on a materials list. | AO1 <br> (3 marks) |
| LO (unit title): 301 Planning and overseeing work activities. | Test spec: 8202.301.03.02 |
| Answers |  |
| Any three (1 mark each); |  |
| - Gangs or number of switches incorporated |  |
| - Ways or switching operation |  |
| - Function |  |
| - Finish or colour or material |  |
| - Type (e.g. grid, plate, surface, flush etc) |  |
| Any other suitable answer but do not allow duplicate marks where same feature is given more than |  |
| one name. |  |


| 2 |  |
| :---: | :---: |
| State the two types of losses associated with a transformer core. |  |
| LO (unit title): 302 Principles of electrical science. | Test spec: 8202.302.01.04 |
| Answers |  |
| The two acceptable (1 mark each); <br> - Iron <br> - Copper |  |

Will accept eddy current loss or hysteresis as alternatives to iron loss but no other answers are acceptable. If eddy current loss or hysteresis is given with iron loss, 1 mark only.
Will also accept heat loss as an alternative to copper loss. Question does state 'the two', so mark first two if more given.


| 4 |  |
| :--- | :--- | :--- |
| State two types of fuse commonly found in electrical installations protecting circuits. | AO1 <br> (2 marks) |
| LO (unit title): 302 Principles of electrical science. | Test spec: 8202.302.03.04 |
| Answers |  |
| Any two from (1 mark each); |  |
| - HRC or HBC |  |
| - Cartridge |  |
| • Semi-enclosed or rewireable |  |
| - Plug fuse |  |

Accept BS numbers as alternative answers. Do not accept duplicates e.g., BS88-3 and Cartridge; or BS88-3 (or BS88) and BS1361, as separate answers. Mark first two only and these must be fuses for the marks.

| $\mathbf{5}$ |  |
| :--- | :--- | :--- |
| List three protective conductors commonly installed in electrical installations as given <br> in BS 7671. | AO1 <br> (3 marks) |
| LO (unit title): 303 Electrical design and installation practices <br> and procedures. | Test spec: 8202.303.02.01 |
| Answers |  |
| Any three from (1 mark each); |  |
|  |  |
| - Earthing conductor |  |
| - Main protective bonding conductor |  |
| - cpc |  |
| - Supplementary equipotential bonding conductor |  |
| - High integrity protective conductor |  |
| - Protective bonding conductor |  |
| Accept variations that are fully understandable and cannot be misunderstood. Do not accept |  |
| functional earth as this is not protective. |  |


| 6 |  |  |  |  |  |  |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| List the first three tests carried out on a newly installed radial lighting circuit. | AO1 <br> (3 marks) |  |  |  |  |  |
| LO (unit title): 304 Principles of inspection, testing and <br> commissioning electrical systems. | Test spec: 8202.304.02.01 |  |  |  |  |  |
| Answers |  |  |  |  |  |  |
| Acceptable answers are (1 mark each); |  |  |  |  |  |  |
| - Continuity (or continuity of conductors) |  |  |  |  |  |  |
| - Insulation resistance |  |  |  |  |  |  |
| - Polarity |  |  |  |  |  |  |
| No other answers acceptable - order not important. Do not accept continuity of bonding etc or ring |  |  |  |  |  |  |
| final. |  |  |  |  |  |  |


| 7 |  |
| :--- | :--- | :--- |
| List three documents that would assist in fault diagnosis which are to be kept by the <br> client. | AO1 <br> (3 marks) |
| LO (unit title): 306 Electrical system fault diagnosis and <br> rectification. | Test spec: 8202.306.02.01 |
| Answers |  |
| Any three (1 mark each); |  |
| - Electrical installation certificates |  |
| - Periodic reports or electrical installation condition reports |  |
| - Operation manuals or manufacturers data |  |
| - Fault reports |  |
| - Planned maintenance schedules |  |
| Exact wording not essential and other similar or separate documents allowed such as schedule of |  |
| test results but no duplications such as inspection schedule for periodic and inspection schedule |  |
| for certificate. |  |
| If electrical installation certificate (or EICR) is given and schedules as alternatives, one mark only |  |
| as these form one document. |  |


| 8 |  |  |  |  |  |  |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| List three factors that affect the decision between repairing or replacing a faulty item <br> of equipment. | AO1 <br> (3 marks) |  |  |  |  |  |
| LO (unit title): 306 Electrical system fault diagnosis and <br> rectification. | Test spec: 8202.306.05.01 |  |  |  |  |  |
| Answers |  |  |  |  |  |  |
| Any three (1 mark each); |  |  |  |  |  |  |
| - Cost |  |  |  |  |  |  |
| - Availability |  |  |  |  |  |  |
| - Downtime |  |  |  |  |  |  |
| - Legal responsibility |  |  |  |  |  |  |
| - Safety responsibility |  |  |  |  |  |  |
| - Accessibility |  |  |  |  |  |  |
| - Frequency of use |  |  |  |  |  |  |

Other suitable but do not accept duplications such as cost to repair, cost to replace as this would attract one mark only or how badly it is damaged (simple language for quantifying) for 1 mark.



12
Determine, for the circuit shown in figure 1, the circuit
a) supply current ( $I_{\mathrm{s}}$ )
b) power factor


Figure 1
LO (unit title): 302 Principles of electrical science $\quad$ Test spec: 8202.302.02.02 \& 03

Answers

$$
\begin{gathered}
2 \pi \times 50 \times 78 \times 10^{-3}=24.5 \Omega(2) \\
\sqrt{45^{2}+24.5^{2}}=51.23 \Omega(1) \\
\frac{200}{51.23}=3.9 \mathrm{~A}(1) \\
\frac{45}{51.23}=0.88(1)
\end{gathered}
$$

Allow 1 mark only for recalling basic formula (with or without figures).
If formula is incorrect in stage 1 or 2, marks for answers should not be given or carried over. If correct formula used but wrong answer, carry over value.
Accept values without units of measure if values are correct.

13

| A three-phase installation had the following load characteristics. <br> L1 $=45 \mathrm{~A}$ <br> L2 $=72 \mathrm{~A}$ <br> L3 $=66 \mathrm{~A}$ | AO2 |
| :--- | :--- | :--- |
| Determine the resulting neutral current. | (4 marks) |
| LO (unit title): 302 Principles of electrical science | Test spec: 8202.302.02.04 |

Answers
Answers may use calculation or graphical means to calculate current.

$$
N=\sqrt{45^{2}+72^{2}+66^{2}-(45 \times 72)-(45 \times 66)-(72 \times 66)}=24.55 \mathrm{~A}
$$

Award marks for the following levels of accuracy;

- (accurate) 23.5 A to 25.5 A (4)
- (fairly accurate) 21 to 23.5 A or 25.5 to 28 A (3)
- Correct calculation or graphics with values but incorrect answer (2)
- Vague attempt at recalling graphic or calculation (formula must be some way to being correct) (1)

| 14 |  |
| :--- | :--- | :--- |
| Determine the illuminance level on a surface 3 m directly below a lamp having a <br> luminous intensity of 800 candela. | AO2 <br> $(3 \mathrm{marks})$ |
| LO (unit title): 302 Principles of electrical science | Test spec: 8202.302 .04 .01 |
| Answers | $\frac{800}{3^{2}}(1)=88.9$ (1)lux(1) |


| 15 |  |
| :--- | :--- | :--- |
| Explain the difference between an earth fault and a short circuit including if circuit <br> breakers or RCDs operate under each condition. | AO2 <br> (4 marks) |
| LO (unit title): 303 Electrical design and installation practices <br> and procedures | Test spec: 8202.303.03.01 |
| Answers |  |
| Explanation to include the following points for 1 mark each; |  |
| - Earth fault is low impedance path between live (or line) and earth |  |
| - Short is low impedance path between live conductors |  |
| - If impedance between line and earth is low enough, circuit breaker will operate for both |  |
| - RCDs will not detect short circuits |  |

16


Figure 2
Determine the overall voltage drop across the distribution and final circuit shown in figure 2.

LO (unit title): 303 Electrical design and installation practices
Test spec: 8202.303.04.01-02 and procedures
Answers

$$
\begin{gathered}
\frac{2.8 \times 42 \times 38}{1000}=4.46 V(1) \\
4.46+1.3=5.7 V(1)
\end{gathered}
$$

Answers within $1 \mathrm{~V}+/-$ acceptable.
If incorrect VD in stage 1, carry this over for marks in stage 2 but formula in stage 1 must be correct.

## 17

A continuity of ring-final circuit test is being undertaken during an initial verification.
During step 1 , the following measurements were made

- $r_{1}-0.8 \Omega$
- $r_{n}-0.8 \Omega$
- $r_{2}-1.34 \Omega$

Explain the relationship between these results and the expected results when line and neutral are cross connected and tested at each socket-outlet.

LO (unit title): 304 Principles of inspection, testing and
Test spec: 8202.304.02.04 commissioning electrical systems
Answers
The results indicate a reduced size cpc in the circuit and Line and $N$ are the same csa (1 for some of this relationship).

$$
\begin{equation*}
\frac{0.8+0.8}{4}(1)=0.4 \Omega \tag{1}
\end{equation*}
$$

$0.4 \Omega$ expected at each socket-outlet between line and neutral.

Explain why the earthing conductor must be disconnected from the installation main
AO2
earthing terminal whilst undertaking a test to obtain a value of $Z_{\mathrm{e}}$.
(3 marks)

LO (unit title): 304 Principles of inspection, testing and
Test spec: 8202.304.03.02 commissioning electrical systems
Answers
Answers to cover the following points (1 mark each);

- remove parallel paths
- through other services or metallic parts (answer must indicate a path)
- ensure only electrical earth is providing low impedance

Similar descriptions may be given but marked on strength of description.

## 19

Figure 3 shows the intended location of a new socket-outlet within a room, as requested by the client. The cable used to supply the socket-outlet is to be concealed in the plastered wall to a depth of 35 mm and run from point $A$ in the ceiling void above.

Describe how to run the cable from point $A$ to the socket in compliance with BS 7671, including any further protection required.

Figure 3

## LO (unit title): 307 Requirements for electrical installations

Test spec: 8202.307.03.01

## Answers

Suitable answer to include detail of;

- cable run above window within 150 mm of ceiling (or above ceiling) (2 marks if both options explored)
- cable to be run within 150 mm (1) of corner of the walls(1)
- cable to be run directly horizontal to socket-outlet (1)
- cable/circuit to be protected by 30 mA RCD (1) known as Additional Protection (1)
- Identifying that the cable is less than $\mathbf{5 0} \mathbf{~ m m}$ so requires measures of some type

Alternatively, description may take route to the left of the window but description must include earthed metallic covering for duration of route up to the socket (to enable earthing).
Accept diagrams as an alternative answer but must include dimensions for the marks.

Figure 4 shows the complete earth fault loop path and supply network for a radial power circuit in an electrical installation.


Figure 4
Evaluate the 230 V single-phase circuit for compliance with BS 7671 in terms of current capacity, voltage drop and disconnection under earth fault conditions.

## LO (unit title): 307 Requirements for

 electrical installations
## Band 1 (1-5 marks)

Poor coverage of the question with no or basic calculations undertaken but may have recalled some points in the process by showing basic formula required. Very few points considered with little relevance or sequence. Limited use of reference materials and little or no evidence that the relevant information can be used in the calculations. No conclusions drawn.

## Access to higher marks

Very few calculations undertaken with few correctly identified stages in the process.
Demonstrated limited ability in researching values such as tabulated values, installation methods, voltage drop tolerances and some rating factors or data from BS 7671.

## Band 2 (6-10 marks)

Some coverage of the question shown with limited calculations or near full coverage with in-accurate calculations. Logical sequence followed, linking stages but with some inaccuracies. Appropriate considerations made through-out the process.

## Access to higher marks

Most stages of the process considered with more accuracy in calculations and relevance in researched data. Logical sequence

## AO4 (see below for test spec references)

## Indicative Content

## Design current

$$
\frac{4800}{230 \times 0.7}=\mathbf{2 9 . 8 1} \mathrm{A}
$$

Protective device therefore $\mathbf{3 2} \mathrm{A}$ (consider reasoning of device type, C type more suitable for machine).

## Suitable live conductors

Live conductor $I_{t}$ from table 4D2A $=36 \mathrm{~A}$
Applicable rating factor $=0.94$
$\mathrm{I}_{\mathrm{z}}=36 \times 0.94=33.84 \mathrm{~A}$ which is greater than 32 A therefore suitable.

## Voltage drop

Table 4D2B mV/A/m = 11 so

$$
\frac{11 \times 24 \times 29.81}{1000}=7.86 \mathrm{~V}
$$

As 7.86 is less than $5 \%$ of $230 \mathrm{~V}(11.5 \mathrm{~V})$ this is suitable.

## Earth fault loop impedance

Table 11 of OSG $4 / 4=9.22 \mathrm{~m} \Omega / \mathrm{m}$
Table I 3 factor $=1.2$

$$
R_{1}+R_{2}=\frac{9.22 \times 1.2 \times 24}{1000}=0.27 \Omega
$$

followed with most stages linked. General analysis is appropriate with some accurate references to permitted materials. Some conclusions drawn at relevant points.

## Band 3 (11-15 marks)

These candidates will be able to follow all design requirements but with minor errors. Candidates will give some consideration to the location when specifying an installation method. The application of correct parameters for calculating Zs and fault current or maximum Zs in accordance with BS 7671.

## Access to higher marks

These candidates will be able to determine all design requirements but with very few errors. They will make justified choices for the circuit breaker type as well as reason all aspects of the circuit design. They will also make comparisons and evaluations, justifying choice.

Test spec references:
302.02.01
302.02.04
303.02.01
303.02.02
303.02.03
303.04.01
303.04.02
303.05.06
303.05.08
307.02.01
307.03.01
307.05.02
307.05.02

$$
Z_{s}=0.19+0.27=\mathbf{0} .45 \Omega \boldsymbol{Z}_{\boldsymbol{s}}
$$

Disconnection must occur within 0.4 seconds and maximum $Z_{s}$ values are, depending on CB type selected from Table 41.3

- Type B-1.37 so acceptable
- Type C -0.68 so acceptable

