

1145-530 March 2018

1145-530 Level 3 Technical Certificate in Engineering
1145-530 Level 3 Advanced Technical Diploma in Engineering
1145-530 Level 3 Advanced Extended Technical Diploma in EngineeringLevel 3 Engineering –
Theory test (1) March 2018

Marking Scheme

Q	Acceptable answer(s)	Guidance	Max mks	Ref
1a)	Elasticity		1	301 1.1 AO1
1b)	Creep		1	301 1.1 AO1
2a)	 Award one mark for any of the following points, up to four marks in total: Heat the metal until cherry red Add carbon either through a modified atmosphere or surface coating/powder/carburising compound Allow soak time so that the carbon can be adsorbed into the surface Cool quickly/quench. 		4	301 2.1 AO1
2b)	Award one mark for any of the following points, up to four marks in total: Normally the movement of dislocations within the lattice facilitates plastic deformation In precipitation hardening, an impurity phase is taken into solution		4	301 2.2 AO2

	Connuential	_	1	
	Heat treatment is used to allow the impurity			
	phase to precipitate (1) typically in areas where			
	there are dislocations in the lattice (1)			
	The precipitated particles impede the movement			
	of dislocations			
	This increases strength and hardness (1) and reduces plasticity (1).			
3	Award one mark for any of the following points, up to		4	301
	four marks in total:			3.2 AO1
	E.g. for Vickers hardness: a diamond shaped tool (1) is			
	pushed into the surface of the material (1) using a set			
	load (1). After this is removed, the dimensions of the			
	indentation are measured (1) and these are related to			
	the hardness using a table (1)			
	Any other appropriate response (including descriptions of other hardness testing methods)			
4a)	Defects could include:	4a) and 4b) One mark for each cell completed with accurate	2	301 4.4
	voids, disbands, delamination and porosity.	information, up to four marks in total		A01
4b)	Test methods could include:		2	301
	tap testing, thermography, x-ray, shearography, ultrasonic.			4.4 AO1
5	Award one mark for any of the following points, up to		5	301
	five marks in total:			5.3 AO2
	Typically have four electrons in their outer			
	shell (1), which form perfect covalent bonds			
	with their neighbouring atoms resulting in			
	poor ability to conduct electricity (1)			
	A small amount of impurity is added to the			
	material (doping)			
	 In n-type materials, this adds an extra electron 			
	in n-type materials, this adds an extra electron			
	which is free to move around			

	Confidential	1	1
	Typical n-type dopants include phosphorous		
	or arsenic		
	In p-type materials, this takes away an		
	electron, leaving a 'hole' which allows		
	electrons from neighbouring atoms to move		
	into the space/hole movement		
	Typical p-type dopants include boron or gallium		
6a)	Award one mark for any one of the following, up to	2	304
	two marks in total:		1.1 AO1
	Gas welding/oxyacetylene		701
	Manual metal arc/'stick' welding		
	Metal Inert Gas (MIG) / Metal Active Gas		
	(MAG)		
	Tungsten Inert Gas (TIG)		
	• Friction		
	Resistance (spot and seam).		
6b)	Award one mark for any one of the following, up to	4	304
	four marks in total:		2.2
			AO2
	Quality Control (QC) is carried out <u>after</u>		
	products are made		
	QC involves measurement of products		
	QC detects faulty products, so that they can		
	be sent back for rework or scrapped		
	Quality assurance (QA) affects products		
	<u>before</u> they are made		
	QA involves putting in place systems to ensure		
	that products are made to the required		
	standard		
	Any other suitable point.		
6c)	Award one mark for any one of the following, up to	2	304
	two marks in total:		2.5 AO1
	• Coatings		

	Confidential		
	Shrink wrap		
	Packaging.		
6d)	Award one mark for each advantage and a mark for a	4	304
	reason associated with it, up to four marks in total.		5.2 AO2
	For example: less work in progress (1) means that less		AUZ
	defects are produced before a fault is detected (1);		
	that less money is tied up in stock (1) and less storage		
	space is required for work in progress (1), both of		
	which result in greater profitability for the company		
	(1).		
	Any other appropriate response.		
6e)	Award up to four marks in total, as indicated:	4	A04
	Award one mark for naming a suitable material and		
	one mark for a suitable reason: for example, a		
	thermoplastic (1) as it is easy to clean (1), or		
	aluminium (1) as it can be recycled (1).		
	Award one mark each for up to two manufacturing		
	processes and one mark for a reason: for example,		
	injection moulding (1) or pressure die casting (1) as		
	the quantity means that it is cost effective to make a		
	reusable mould (1).		
	Any other appropriate response.		
	Marks for the manufacturing process can be awarded		
	even if the material recommended was not appropriate.		
7a)	Award one mark each for two of the following:	2	305
,α,	aesthetic requirements	_	1.2
	• cost		A01
	environmental issues		
	size		
	sizesafety considerations		
	safety considerationsfunction		
	 materials 		

	Confidential		1
	limitations affecting the choice of		
	manufacturing methods		
	maintenance requirements.		
7b)	Award one mark each for up to three of the following:	5	305
	Design constraints are needs that must be met		2.2 AO2
	for the product to function or meet its critical		A02
	requirements		
	Design constraints limit what you can make		
	 Design wants represent features that are 		
	desirable but not essential for the product to		
	be effective		
	Any other suitable point.		
	One mark each for suitable example of a design		
	One mark each, for suitable example of a design constraint and a design want.		
8a)	Award one mark for each drawing type up to a total of	3	305
,	three marks:		3.3
	 Sketches to show design ideas 		AO1
	Orthographic (working) drawings		
	General arrangement drawings		
	Exploded views		
	Circuit diagrams		
	Flow charts		
	 Any other suitable drawing type 		
8b)	Award one mark for each advantage or disadvantage	6	305
	and a mark for a reason associated with it, up to six		3.4
	marks in total.		AO2
	For example: advantage: physical components are not		
	needed (1) so it is cost effective (1); components can		
	be changed easily (1) reducing the time needed to test		
	different ideas (1).		
	Disadvantage: not using the actual components (1), so		
	the circuit may not be operate as exactly as modelled		
	(1)		
	Any other appropriate response.		

9	Band descriptors	Indicative content	9	A04
	Award marks as follows:	Examples of points that may be		
		included in the answer are:		
	No answer worthy of credit – e.g. insufficient work	Facilitating the production of		
	submitted, answer not relevant to the question,	high volume items for		
	answer is factually incorrect. (0 marks)	consumer consumption		
		Improved consistency of		
	Band 1 – basic – largely descriptive response based on	products/'standardised'		
	recall of knowledge. A few influences, either mainly social or mainly economic, are stated but their	quality, giving improved		
	implications are not explained.	customer confidence in		
	Candidates at the top of this level may be	product performance		
	characterised by describing some influences more in	Reduction in 'customisation' of		
	detail, but showing understanding of the implications of just one contribution	goods – 'one size fits all'		
	(1-3 marks)	approach		
	. ,	Development of increased		
	Band 2 – clear – more detailed response, including	production capacity, providing		
	statements of influences that show understanding of most of their direct implications. Both social and	faster access to goods and		
	economic influences discussed with some evaluation.	high volume goods at lower		
	Candidates at the top of this level may be			
	characterised by stating and explaining a variety of	prices		
	influences or causal links contributing to or resulting from influences; they may evaluate the broader	Development of large		
	implications beyond manufacturing of a few of these	factories, providing centralised		
	influences.	employment opportunities		
	(4-6 marks) Band 3 – detailed – fully detailed response including	and increased jobs in		
		transportation		
	statements of influences that show understanding of	Reduction in overall number of		
	both their direct and secondary implications. Both	employment opportunities,		
	social and economic influences discussed, with linking and conclusions drawn.	but increase in specialist roles		
	Candidates at the top of this level may be	such as programming or		
	characterised by evaluating and substantiating how a	maintenance		
	broad range of influences or causal links have affected	Reduction of the need for		
	society both directly and through secondary effects.	human workers to do		
	(7-9 marks)	repetitive work or work in		
		hazardous environments For no awardable content, award		
		0 marks.		
10a)	n log 12 = log 8		3	306
				1.3

	Confidential		
	Therefore n = log 8 / log 12		AO2
	= 0.837		
	Award one mark for taking logs, one mark for		
	rearranging and one mark for the correct answer.		
10b)	h \land h^2 - 4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4	306
100)	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	•	1.4
			AO2
	$-8 + \sqrt{(8)^2 - (4 \times 1 \times 7)}$		
	$x = \frac{-8 \pm \sqrt{(8)^2 - (4 \times 1 \times 7)}}{2 \times 1}$		
	x = 7, $x = 1$		
	Award one mark for the formula, one mark for		
	inserting correct values and one mark for each of the two roots.		
10c)	$x = r \cos \theta = 450 \cos 70^{\circ} = 153.9$	4	306 4.4
	$y = r \sin \theta = 450 \sin 70^{\circ} = 422.9$		AO2
	Award one mark each for the method and one mark		
	for each correct answer.		
11a)	As the maximum value of sin (5t) = 1, therefore the	1	306
	amplitude is 50 mm.		2.3
			A02
11b)	As $\theta = \omega$ t = 5t, the angular frequency = 5 rad s ⁻¹	1	306
			2.3
			A02
11c)	The frequency f = ω / 2π = 5 / 2π = 0.796 Hz	2	306
			2.3 A02
	Award one mark for formula and one mark for answer.		AVE
11d)	The time of one cycle $T = 1/f = 1 / 0.796 = 1.257$ seconds	2	306 2.3
	Seconds		A02
	Award one mark for formula and one mark for answer.		
11e)	The time for the mass to travel from zero to maximum	1	306
,	movement = 0.25 T = 0.314 seconds	_	2.3
	Allow for follow through for d) and e).		A02
	Allow for follow till ough for all alla ej.		

	Connaential		_	
12	du/dx = 2x		6	306 3.2
	\Rightarrow xdx = ½ du			AO2
	⇒ [4e ^u ½ du			
	$So \Rightarrow 2 \int e^{u} du$			
	$\Rightarrow 2e^{u} + c$			
	Hence the area under the curve is $2e^{(x^2-1)} + c$			
	Award one mark for each step, including the answer.			
13	Band descriptors	Indicative content	12	A04
	Award marks as follows:	Examples of points that may be included in the answer are:		
	No answer worthy of credit – e.g. insufficient work	included in the answer are.		
	submitted, answer not relevant to the question,	One-off, batch, mass and		
	answer is factually incorrect. (0 marks)	continuous (flow-line)		
	(O marks)	production		
	Band 1 – basic – largely descriptive response based on			
	recall of knowledge, relating only to manufacturing	Use of jigs, fixtures,		
	processes or use of automation. May describe one or two considerations for specific activities in relation to	templates and moulds		
	production volume.	Use of CAD/CAM		
	Candidates at the top of this level may be	Use of automation for		
	characterised by showing understanding of the	processes and materials		
	reasons for a few decisions related to scale of manufacture.	handling		
	(1-4 marks)	Assembly methods: from		
		hand built to cradles,		
	Band 2 – clear – more detailed response, showing	conveyor belts and		
	recall of knowledge and understanding of the implications of the production volume on the	automated assembly.		
	manufacturing processes and supporting activities.	Materials and process		
	Different options for manufacturing processes and	selection		
	systems are considered and analysed, with reasoning	 Consideration of process 		
	as to why these would be used or not used for different scales of manufacture.	capabilities and		
	Candidates at the top of this level may be	manufacturing tolerances		
	characterised by evidence that they have considered	Design for Manufacture		
	how product quality and cost are influenced by the			
	decisions made.	Measurement and testing,		
	(5-8 marks)	including equipment used		
			1	

Band 3 – detailed – fully detailed response, showing understanding of how the production volume affects the whole manufacturing system. A range of different manufacturing approaches are evaluated, with substantiation of which approaches are deemed more effective at different scales of production, making recommendations and producing supporting conclusions.

Candidates at the top of this level may be characterised by analysing and evaluating how the approaches used at different scales of production are affected by product-related factors such as repeatability, cost, consistency and customer preference.

(9-12 marks)

- Raw materials and stock requirements
- Consistency, repeatability and production rates
- Impact of quality on the customer