

2850-361 DECEMBER 2014 Level 3 Diploma in Engineering (IVQ)

Advanced Mathematics

Tuesday 8 December 2014 14:00-17:00

Do not write your answers in this booklet as it will not be marked. All answers should be written in the space provided on the question paper.

SOURCE DOCUMENT Formulae Sheet

Please DO NOT return to City & Guilds.
Destroy this document locally

Trigonometry

Cosine rule $a^2 = b^2 + c^2 - 2bcCosA$

Sine rule $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

Area of triangle = $\frac{1}{2}a.b.\sin C$

Trigonometric identities

- $Sin(A \pm B) = Sin A Cos B \pm Cos A Sin B$
- $Cos(A \pm B) = Cos A Cos B \mp Sin A Sin B$

Numerical integration

Simpson's rule

$$\int_{a}^{b} y \, dx = \frac{1}{3} h \{ (y_0 + y_n) + 4(y_1 + y_3 + \dots \ y_{n-1}) + 2(y_2 + y_4 + \dots y_{n-2}) \}$$

where
$$h = \frac{b-a}{n}$$
 and n is even

Trapezium rule

$$\int_{a}^{b} y \, dx = \frac{1}{2} h\{(y_0 + y_n) + 2(y_1 + y_2 + \dots y_{n-1})\} \text{ where } h = \frac{b - a}{n}$$

Volume of revolution around x axis

$$V = \int_a^b \pi y^2 dx$$

Standard deviation =
$$\sqrt{\left(\frac{\sum x^2 f}{\sum f}\right) - (mean)^2}$$

Complex numbers

$$[r(\cos\theta+j\sin\theta)]^n=r^n(\cos n\theta+\sin n\theta)$$

Calculus

Differentiation

y = f(x)	$\frac{dy}{dx} = f'(x)$
lnx	$\frac{1}{x}$
e^{ax}	ae ^{ax}
Sinx	Cos x
Cos x	-Sinx
Tanx	Sec^2x

Product rule

If
$$y = uv$$
 then $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

Quotient rule

If
$$y = \frac{u}{v}$$
 then $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

Chain (or function of a function rule)

If
$$y = f(u)$$
 and $u = g(x)$ then $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$

Integration

f(x)	$\int f(x)dx$
x^n	$\frac{x^{n+1}}{n+1} + c$
$\frac{1}{x}$	lnx + c
Cosxdx	Sinx + c $-Cosx + c$
Sinxdx	-Cosx + c
Sec^2xdx	tanx + c

3

By parts

$$\int u dv = uv - \int v du$$

Substitution

$$\int f(g(x))g'(x)dx = \int f(u)du$$