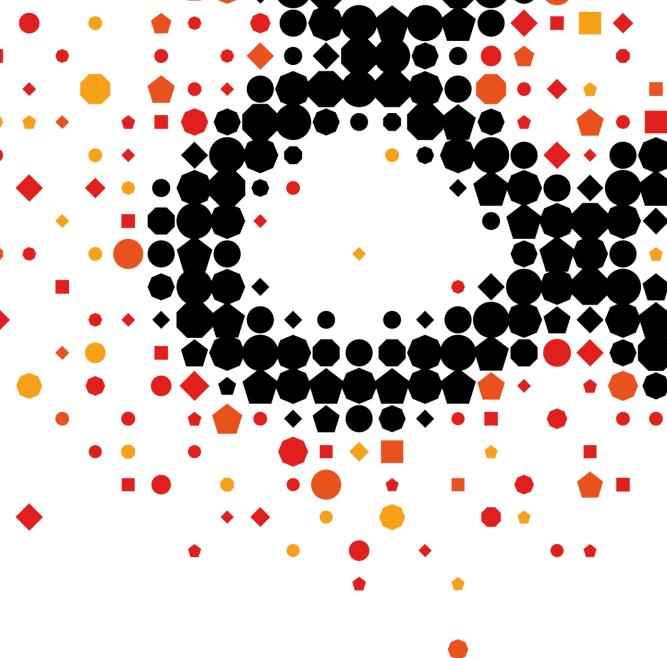
Welcome to the T Level Engineering & Manufacturing

The webinar will begin shortly

Rob Stott - City & Guilds Industry Manager

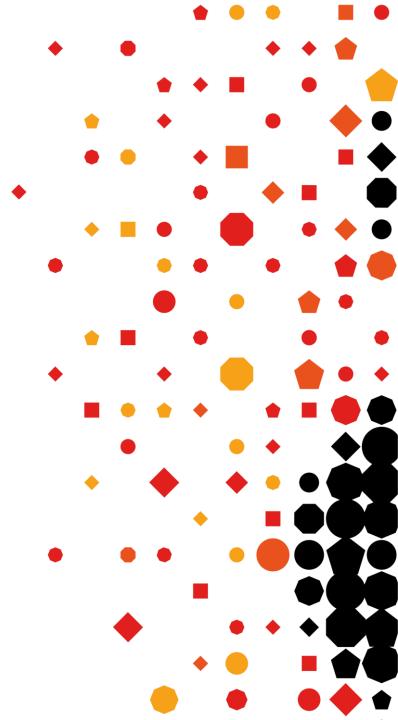
Mike Scarrott - Production Specialist


Engineering & Manufacturing

T Levels Employer Introduction

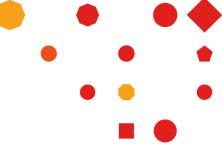
Rob Stott- City & Guilds Industry Manager

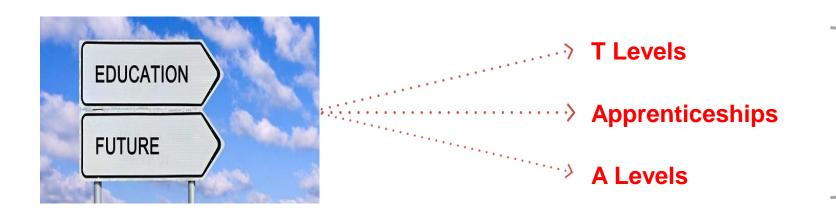
Mike Scarrott- Production Specialist



Agenda

- 1. Background and purpose of today's meeting
- 2. What are T Levels
- 3. Pathway breakdown/ content
- 4. Employer engagement (EIB & T Levels)
- 5. Milestones
- 6. Feedback/ Questions
- 7. Next Steps




Background and purpose of today's meeting

- In October C&G won 3 contracts to develop the E&M TQs in D&D, MIR and MPC, in partnership with EAL 5
 year contract.
- Since October we have been working to amplify the outline content, work out the Guided Learning Hours (GLH) and in doing so have come across a number of challenges.
- Eligible providers must be approved by DfE in the first instance.
- Each TQ is based on content developed by an employer panel.
- The Institute are the certificating authority and own the IP not the AO.
- The winning AO is the development and assessment partner and do not produce a certificate for the learner.
- T Levels are a programme not a qualification.
- Feedback and validation from providers and employers (be it positive or negative) is a key part of
 this development and as part of our contract we are asked to provide the Institute, Ofqual and the DfE with
 evidence of the feedback and action taken as a result

What are T Levels?

T Levels will become 1 of 3 major options when a student reaches Level 3

Key principles

To ensure the skills system responds to the changing labour market, employers, providers and other partners need to be involved in both design and delivery.

Co-creation: shaping occupational standards and designing wider T Level content.

Co-delivery: employers offering industry placements to T Level students so they can apply the knowledge and skills they have learnt in college.

Some more detail

TQ (Core)

Maybe more than one core

Core must be applicable to all pathways

Assessment of knowledge and core skills. Exam and project

TQ (OS)

Based on Apprenticeship standard at level 3

Assessment of synoptic/holistic learning

Part time work can be included

Can use RWE for SEND/YO learners (105HRS)

Taster Sessions of 35 Hrs

Core skills (transferable skills)

Softer skills identified by employers as lacking currently.

These core skills may differ per TQ

Types of skills needed: communication, team work, problem solving, research

English & Maths

For those who have not achieved level 2 GCSE they is a requirement to complete:

GCSE in English & maths or FS

Progression/outcomes:

Potential to progress:

into a job

Onto an apprenticeship

Into Higher education

T Level programme composition

1400-1800 GLH hours over two years. Achievement of T Level must include all components. UCAS points will be attached and will be equivalent to 3 A levels.

50% Total TQ time

Graded A* - E

Core 1 Concepts & theories

Core 2 Transferable/Core skills

Assessment:

- External exam
- Substantial employer set project

OCCUPATIONAL SPECIALISM

50% Total TQ time

Graded Pass/merit/distinction

Based on occupational maps
No less than 50% of the total qualification
planned time

Assessment:

practical assignment(s)

WORK
PLACEMENT
315-420 hours
Min 45-60 days

Maths, English and digital skills
GCSE or Functional Skills Level 2

Enrichmenttutorial

Technical Qualification overview for Engineering:

Engineering Core Component

Pathway Core Component

Pathways:

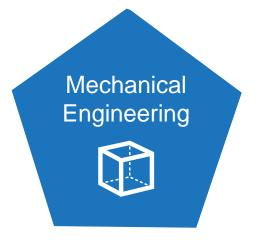
Design & Development for Engineering & Manufacturing

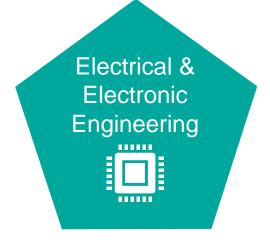
Maintenance, Installation & Repair for Engineering & Manufacturing

Learners must complete:

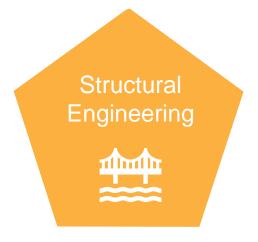
- Engineering Core
- 1 Pathway Core
- 1 Occupational specialism within a pathway

Engineering, Manufacturing, Processing and Control





Route: Engineering and Manufacturing


PATHWAY - Design and Development

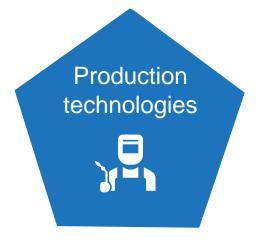
Occupational Specialisms

Proposed TQ overview for MIR pathway:

Route: Engineering and Manufacturing

PATHWAY - Maintenance, Installation and Repair

Occupational Specialisms




Route: Engineering and Manufacturing

PATHWAY - Manufacturing, Processing and Control

Occupational Specialisms

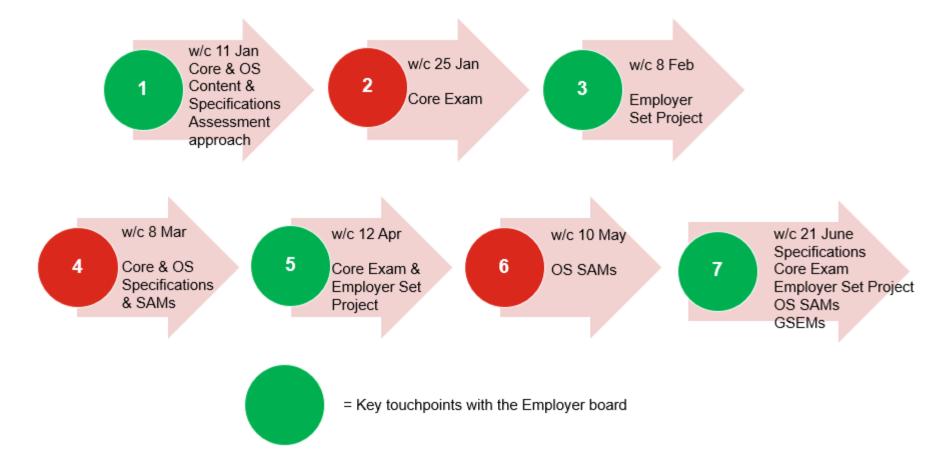
Engineering and Manufacturing								
Design and Development		Maintenance, Installation and Repair			Manufacturing, Processing and Control			
Core Content (GLH)	Pathway Core (GLH)	Occupational Specialism (GLH)	Core Content (GLH)	Pathway Core (GLH)	Occupational Specialism (GLH)	Core Content (GLH)	Pathway Core (GLH)	Occupational Specialism (GLH)
900 – 1100	150	540 – 600	900 – 1100	150	540 – 600	900 – 1100	250	800 – 1000
<mark>1590 - 1850</mark>			<mark>1590 - 1850</mark>			<mark>1950 - 2350</mark>		

- To put this into context:
 - 3 x A Levels = 1080 hours, with three 1.5 to 2.5 hrs exams assessing 360 hours of content for each
 - There is currently too much content for the manageable delivery and assessment of the T Level based on GLH and breadth of content

Guided Learning Hours New Proposal for Core and OS content

Engineering and Manufacturing						
Design a	nd Development	Maintenan	ce, Installation and Repair	Manufacturing, Processing and Control		
Core Content (GLH)	Occupational Specialism (GLH)	Core Content (GLH) Core Cocupational Specialism (GLH)		Core Content (GLH)	Occupational Specialism (GLH)	
720 400 – 500		720 360– 570		720	1290 – 1736	
1	120-1220	1080 - 1290		2010 - 2456		

- To put this into context:
 - 3 x A Levels = 1080 hours, with three 1.5 to 2.5 hrs exams assessing 360 hours of content for each
 - There is still currently too much content for the manageable delivery and assessment of the T Level based on GLH and breadth of content.


Guided Learning Hours: Sequence of Delivery

Asse	essment in series					
		Winter Series		Spring Series		Summer Series
Year 1	Term 1	Christmas	Term 2	Easter	Term 3	Summer
Delivery	Core		Core		Core	
Placement	Core		Placement		Placement	
Assessment	0.000 10/00/000				ESP Window	Core exams
Year 2	Term 1	Christmas	Term 2	Easter	Term 3	Summer
Delivery	OS		OS			
Placement	Placement		Placement			
Assessment	ESP Window resit	Core Exams resit		OS as	ssignment	

- Feasible delivery
- Space for resit opportunities
- Guided learning hours rationalised
- To deliver the programme in the 2 year window the assessments will need to be approximately sequenced in this way.

Exemplar Specifications

To achieve the T Level Technical Qualification in Engineering and Manufacturing:

Maintenance, Installation and Repair (Level 3) (delivered by City & Guilds) learners must complete the three components of the Technical qualification. These are known as the core component and the occupational specialism:

(300) plus one from (311 – 316)

T Level Technical Qualification in Engineering and Manufacturing: Maintenance, Installation and Repair (Level 3)					
City & Guilds component number	Component title	Component level	GLH		
Mandatory					
300	Engineering common core	3	720		
Choose one standalon	e occupational specialism				
Standalone					
311	Maintenance engineering technologies: Mechanical	3	<mark>520</mark>		
312	Maintenance engineering technologies: Mechatronic	3	<mark>570</mark>		
313	Maintenance engineering technologies: Electrical and Electronic	3	<mark>520</mark>		
314	Maintenance engineering technologies: Control and Instrumentation	3	360		
315	Vehicles	3	340		
316	Energy and Utilities Technologies	3	<mark>570</mark>		

Technical qualification scheme of assessment overview

Assessment component	Method	Duration	Marks	Weighting	Marking	Grading	
Exam paper 1	Externally set exam	2 hours	102	35%	Externally marked	This are a second and the	
Exam paper 2	Externally set exam	2 hours	102	35%	Externally marked	This component wi	
Employer-set project	Externally set project	21 hours	100	30%	Externally marked	grade scale A* - E	
Occupational Specialism Co	mponent - Learners must com	plete one asses	ssment comp	onent			
Assessment component	Method	Duration	Marks	Weighting	Marking	Grading	
Maintenance engineering technologies: Mechanical	Externally set assignment	tbc	tbc	tbc	Externally moderated		
Maintenance engineering technologies: Mechatronic	Externally set assignment	tbc	tbc	tbc	Externally moderated		
Maintenance engineering technologies: Electrical and Electronic	Externally set assignment	tbc	tbc	tbc	Externally moderated	All occupational specialism components will be awarded on the grad scale P, M, D	
Maintenance engineering technologies: Control and Instrumentation	Externally set assignment	tbc	tbc	tbc	Externally moderated		
Vehicles	Externally set assignment	tbc	tbc	tbc	Externally moderated		
Energy and Utilities Technologies	Externally set assignment	tbc	tbc	tbc	Externally moderated		

24

Engineering and Manufacturing: Maintenance, Installation and Repair Technical Qualification Specification

Exemplar Core Examinations

Multi-mark questions

Question

A crane is holding a crate of mass 200 kg a height of 9 m above the floor.

a. Calculate the potential energy of the crate.

(2 marks)

The crate is dropped by the crane. Calculate its velocity at the moment it is about to hit the floor. (4 marks)

Additional information: The value of gravity is 9.8 m s-2.

Mark Scheme

- a. $PE = mgh = 200 \times 9.8 \times 9_{1} = 17640 J [1]$
- b. $KE = \frac{1}{2} \text{ mv}^2$ [1]

From the principle of conservation of energy KE = PE = 17640 J [1] Rearranging the formula for KE, $v = \sqrt{((2 \text{ x KE}) / \text{m})} = \sqrt{((2 \text{ x 17640}) / 200)}$ [1] $v = 9.39 \text{ m s}^{-1}$ [1]

Total marks	6
АО	AO1 = 0 AO2 = 2 (for a) + 4 (for b) AO3 = 0
Qual spec reference	Common core 7.2
Lines	a: 4 lines b: 8 lines

Paper 2: Engineering in Context

Example question types

Single-mark questions

Question

What is the main requirement of the Regulatory Reform Fire Safety Order 2005? (1 mark)

Mark Scheme

1 mark for any of the following:

- . Eliminate or reduce the risk of fire as far as is reasonably practical.
- · Provide general fire precautions to deal with any risk.
- Take additional measures to ensure fire safety where flammable or explosive materials are used or stored.
- · Create a plan to deal with any emergency and where necessary record any findings.

Accept any other appropriate response.

Total marks	1
AO	AO1 = 1 AO2 = 0 AO3 = 0
Qual spec reference	Common core 12.1
Lines	2 lines

Exemplar Employer Set Project

Design specification

Performance requirements for the bollard

Train Express Limited wish to develop a bespoke bollard to be sited in public realm spaces outside their stations across the UK (refer to Photograph 1). The company wish to 'reengineer' the standard self-righting internally illuminated bollard (refer to Photograph 2) used frequently in streetscapes across the UK. The new bollard is also required to monitor the number of people using a station and should be energy efficient. The specific performance requirements of the bollard are:

- The bollard shall have an overall height of 1000 mm and width of 300mm.
- Each bollard needs to be able to sustain an impact loading from a vehicle. The force applied to the barrier should be calculated in accordance with BS EN 1991-1-1:2002 (refer to Table 1).
- The bollard is to be manufactured from a recycled or sustainable material.
- The bollard is to be fitted with technology that is able to count human presence.
- The bollard is to be lit by a low energy lighting source.
- The bollard is to have an internal light source like the original, which ensures that it is highly conspicuous from all sides.
- The overall aesthetic design of the bollard is to be modern and reflect the intended siting outside a railway station.
- The bollard shell should be able to withstand a minor vehicle impact and be easily replaceable.
- Train Express Limited wish to limit or eliminate any mains power source to the bollard.
- The bollard should be designed as far as possible to be vandal proof.

Table 1: Loading applied to the bollard

The horizontal characteristic force F (in KN) should be equal to that delivered by the impact of a vehicle given by:

 $F = \frac{0.5 \, m \, v^2}{\partial c + \partial b}$

Where:

m is the gross mass of the vehicle in (kg)

v is the velocity of the vehicle (in m/s) normal to the barrier.

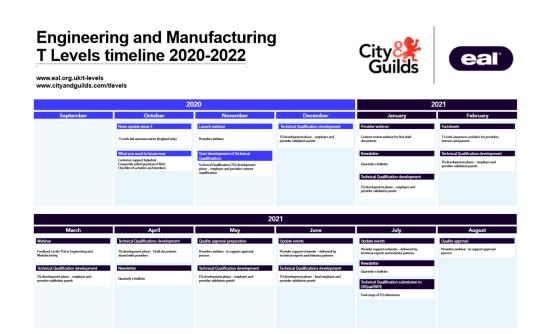
 ∂c is the deformation of the vehicle (in mm)

 ∂b is the deformation of the bollard (in mm)

Photographs

Photograph 1: Typical area outside a Train Express Limited Station

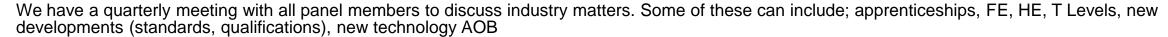
(Source of image: Shuttersto


Support and Guidance

Ready to Support eligible providers and stakeholder engagement

- ➤ New Webpages for T Levels
- > Timelines
- Webinar for eligible providers
- > Provider focus groups
- Employer Industry Boards
- > E-bulletins
- > Draft specification
- Dedicated technical advisors

City & Guilds: cityandguilds.com/tlevels/engineering


EAL: eal.org.uk/T-Levels

Get Involved - Makes a difference.

Employer Industry Board (EIB)

T Level Project

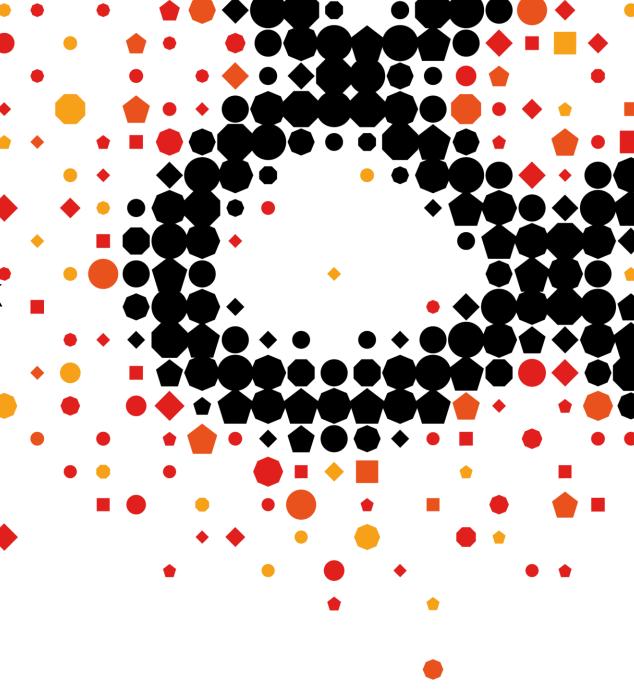
It is critical for the success of T levels that we ensure the TQ is fit for purpose, aligns to employer needs and allows a young person to make informed choices about their future.

We have regular meetings to review key documentation for the T Levels. These can include; specifications, exams, specialist content. Sessions are skill specific and generally for 1 hr.

• You can get involved in: Writing content, Developing assessment materials, Reviewing, Validation

We can be flexible with dates and means of communicating, we just want to ensure your input is gained. (*Under current circumstances our development is completed virtually.*)

- Get in touch, send an email to:
 - qualdevelopment@cityandguilds.com
 - product.query@eal.org.uk


Any questions

Please complete the feedback form

Thank you!

Industry Manager- Rob Stott Robert.stott@cityandguilds.com

