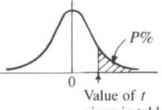
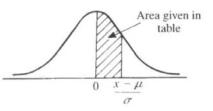


9210-100 Reference booklet


Sample

PERCENTAGE POINTS OF THE χ^2 -DISTRIBUTION

						8	in tuote					
\angle	Р	99.5	99	97.5	95	90	10	5	2.5	1	0.5	0.1
v	/											10.00
	1	0.00	0.00	0.00	0.00	0.02	2.71	3.84	5.02	6.63	7.88	10.83
F	2	0.01	0.02	0.05	0.10	0.21	4.61	5.99	7.38	9.21	10.60	13.82
lor	3	0.07	0.11	0.22	0.35	0.58	6.25	7.81	9.35	11.34	12.84	16.27
eec	4	0.21	0.30	0.48	0.71	1.06	7.78	9.49	11.14	13.28	14.86	18.47
Fr	5	0.41	0.55	0.83	1.15	1.61	9.24	11.07	12.83	15.09	16.75	20.52
Degrees of Freedom	6	0.68	0.87	1.24	1.64	2.20	10.64	12.59	14.45	16.81	18.55	22.46
ee	7	0.99	1.24	1.69	2.17	2.83	12.02	14.07	16.01	18.48	20.28	24.32
100	8	1.34	1.65	2.18	2.73	3.49	13.36	15.51	17.53	20.09	21.96	26.12
D	9	1.73	2.09	2.70	3.33	4.17	14.68	16.92	19.02	21.67	23.59	27.88
	10	2.16	2.56	3.25	3.94	4.87	15.99	18.31	20.48	23.21	25.19	29.59


PERCENTAGE POINTS OF THE *t*-DISTRIBUTION

given in table

/	P (2P)	10 (20)	5 (10)	2.5 (5)	1 (2)	0.5 (1)	0.1 (0.2)	0.05 (0.1)
V	1	3.08	6.31	12.7	31.8	63.7	318.3	636.6
	2 3	1.89 1.64	2.92 2.35	4.30 3.18	6.96 4.54	9.92 5.84	22.3 10.2	31.60 12.92
	2 3 4 5	1.53 1.48	2.13 2.02	2.78 2.57	3.75 3.36	4.60 4.03	7.17 5.89	8.61 6.87
mo	6 7 8	1.44 1.41 1.40	1.94 1.89 1.86	2.45 2.36 2.31	3.14 3.00 2.90	3.71 3.50 3.36	5.21 4.79 4.50	5.96 5.41 5.04
Freedom	9 10	1.38 1.37	1.80 1.83 1.81	2.26 2.23	2.82 2.76	3.25 3.17	4.30 4.14	4.78 4.59
Degrees of	11 12 13	1.36 1.36 1.35	1.80 1.78 1.77	2.20 2.18 2.16	2.72 2.68 2.65	3.11 3.05 3.01 2.98	4.03 3.93 3.85 3.79	4.44 4.32 4.22
D	14 15 16	1.35 1.34 1.34	1.76 1.75 1.75	2.14 2.13 2.12	2.62 2.60 2.58	2.98 2.95 2.92	3.79 3.73 3.69	4.14 4.07 4.01
	17 18 19	1.34 1.33 1.33 1.33	1.73 1.74 1.73 1.73	2.12 2.11 2.10 2.09	2.58 2.57 2.55 2.54	2.92 2.90 2.88 2.86	3.65 3.61 3.58	3.96 3.92 3.88
	20	1.33	1.73	2.09	2.53	2.85	3.55	3.85

THE NORMAL PROBABILITY INTEGRAL

$\frac{x-\mu}{\sigma}$	0	1	2	3	4	5	6	7	8	9
0	0000	0040	0080	0120	0160	0199	0239	0279	0319	0359
.1	0398	0438	0478	0517	0557	0596	0636	0675	0714	0753
.2	0793	0832	0871	0909	0948	0987	1026	1064	1103	1141
.3	1179	1217	1255	1293	1331	1368	1406	1443	1480	1517
.4	1555	1591	1628	1664	1700	1736	1772	1808	1844	1879
.5	1915	1950	1985	2019	2054	2088	2123	2157	2190	2224
.6	2257	2291	2324	2357	2389	2422	2454	2486	2517	2549
.7	2580	2611	2642	2673	2703	2734	2764	2794	2822	2852
.8	2881	2910	2939	2967	2995	3023	3051	3078	3106	3133
.9	3159	3186	3212	3238	3264	3289	3315	3340	3365	3389
1.0	3413	3438	3461	3485	3508	3531	3554	3577	3599	3621
1.1	3643	3665	3686	3708	3729	3749	3770	3790	3810	3830
1.2	3849	3869	3888	3907	3925	3944	3962	3980	3997	4015
1.3	4032	4049	4066	4082	4099	4115	4131	4147	4162	4177
1.4	4192	4207	4222	4236	4251	4265	4279	4292	4306	4319
1.5	4332	4345	4357	4370	4382	4394	4406	4418	4429	4441
1.6	4452	4463	4474	4484	4495	4505	4515	4525	4535	4545
1.7	4554	4564	4573	4582	4591	4599	4608	4616	4625	4633
1.8	4641	4649	4656	4664	4671	4678	4686	4693	4699	4706
1.9	4713	4719	4726	4732	4738	4744	4750	4756	4761	4767
2.0	4772	4778	4783	4788	4793	4798	4803	4808	4812	4817
2.1	4821	4826	4830	4834	4838	4842	4846	4850	4854	4857
2.2	4861	4864	4868	4871	4875	4878	4881	4884	4887	4890
2.3	4893	4896	4898	4901	4904	4906	4909	4911	4913	4916
2.4	4918	4920	4922	4925	4927	4929	4931	4932	4934	4936

Tables of Transforms

Laplace and z Transforms

Definition	f(t) from t = 0 -	$F(s) = L[f(t)] = \int_{0-}^{\infty} f(t) \cdot exp(-st) \cdot dt$	$F(z) = L[f^*(t)]_{z = exp(Ts)}$
Sum	$af_1(t) + bf_2(t)$	$aF_1(s) + bF_2(s)$	$aF_1(z) + bF_2(z)$
First derivative	(d/dt)f(t)	sF(s) - f(0-)	
nth derivative	$(d^n/dt^n)f(t)$	$s^{n}F(s) - s^{n-1}f(0-) - s^{n-2}f^{(1)}(0-) \dots$	
Definite integral	$\int_{0-}^{t} f(\tau) d\tau$	$\frac{1}{s}F(s)$	
Shift in t	$f(t-kT) \cdot H(t-kT)$	exp(-skT)F(s)	$z^{-k}F(z)$
Exponential multiplier	$\exp(-\alpha t)$. $f(t)$	$F(s + \alpha)$	$F[z \exp(\alpha T)]$
Periodic function (period 7) f(t)	$\frac{1}{1-\exp(-sT)}\int_{0-}^{T}\exp(-st)f(t)dt$	
Initial value	$f(t), t \rightarrow 0+$	$sF(s), s \rightarrow \infty$	w :
Final value	$f(t), t \rightarrow \infty$	$sF(s), s \rightarrow 0$	
Description	f(<i>t</i>)	F(s)	F(z)
1. Unit impulse: at $t = 0$ at $t = k$	$\frac{\delta(t)}{T \delta(t-kT)}$	$\lim_{t\to\infty} 1$	$\frac{1}{z^{-k}} \operatorname{or} z^{-0}$
2. Unit step	H(<i>t</i>)	<u>1</u> s	$\frac{z}{z-1}$
3. Delayed step		$\frac{\exp(-skT)}{s}$	$\frac{z^{-k+1}}{z-1}$
4. Rectangular pulse (duration kT)	H(t) - H(t - kT)	$\frac{1 - \exp(-skT)}{s}$	$\frac{z-z^{-k+1}}{z-1}$
5. Unit ramp	t	$\frac{1}{s^2}$	$\frac{Tz}{(z-1)^2}$
6. Delayed ramp	$(t-kT)\mathbf{H}(t-kT)$	$\frac{\exp(-skT)}{s^2}$	$\frac{Tz^{-k+1}}{(z-1)^2}$
7. Acceleration function	1t ²	$\frac{1}{s^3}$	$\frac{1}{2} \frac{T^2 z(z+1)}{(z-1)^3}$
8. nth order ramp	r		$1)^{n} \frac{\partial^{n}}{\partial \alpha^{n}} \left(\frac{z}{z - \exp(-\alpha T)} \right)$
9. Exponential decay	$exp(-\alpha t)$	$\frac{1}{s+\alpha}$	$\frac{z}{z - \exp(-\alpha T)}$

D -	escription	f(<i>t</i>)	F(s)	F(z)
10). Exponential rise	$1 - \exp(-\alpha t)$	$\frac{\alpha}{s(s+\alpha)}$	$\frac{[1 - \exp(-\alpha T)]z}{(z - 1)[z - \exp(-\alpha T)]}$
11	1. Exponential $\times i$	$t \exp(-\alpha t)$	$\frac{1}{(s+\alpha)^2}$	$\frac{Tz \exp(-\alpha T)}{[z - \exp(-\alpha T)]^2}$
12	2. Exponential $\times t^n$	$t^n \exp(-\alpha t)$	$\frac{n!}{(s+\alpha)^{n+1}}$	$(-1)^n \frac{\partial^n}{\partial \alpha^n} \left[\frac{z}{z - \exp(-\alpha T)} \right]$
13	b. Difference of exponentials	$\exp(-\alpha t) - \exp(-\beta t)$	$\frac{\beta-\alpha}{(s+\alpha)(s+\beta)}$	$z \left[\frac{1}{z - \exp(-\alpha T)} - \frac{1}{z - \exp(-\beta T)} \right]$
14	. Sine	sin cor	$\frac{\omega}{s^2 + \omega^2}$	$\frac{z \sin \omega T}{z^2 - 2z \cos \omega T + 1}$
15	. Phase-advanced sine	$\sin(\omega t + \phi)$	$\frac{\omega\cos\phi + s\sin\phi}{s^2 + \omega^2}$	$\frac{z^2 \sin \phi + z \sin(\omega T - \phi)}{z^2 - 2z \cos \omega T + 1}$
16	Sine $\times t$	t sin wt	$\frac{2\omega s}{(s^2+\omega^2)^2}$	ATT A DESIGN OF A
17	. Exponentially decaying sine	$exp(-\alpha t) \sin \omega t$	$\frac{\omega}{(s+\alpha)^2+\omega^2}$	$\frac{z \exp(-\alpha T) \sin \omega T}{z^2 - 2z \exp(-\alpha T) \cos \omega T + \exp(-2\alpha T)}$
18	. Cosine	cos wt	$\frac{s}{s^2 + \omega^2}$	$\frac{z(z - \cos \omega T)}{z^2 - 2z \cos \omega T + 1}$
19	Phase-advanced cosine	$\cos(\omega t + \phi)$	$\frac{s\cos\phi-\omega\sin\phi}{s^2+\omega^2}$	$\frac{z^2\cos\phi-z\cos(\omega T-\phi)}{z^2-2z\cos\omega T+1}$
20.	. Offset cosine	$1 - \cos \omega t$	$\frac{\omega^2}{\mathrm{s}(\mathrm{s}^2+\omega^2)}$	$\frac{z}{z-1} - \frac{z(z-\cos\omega T)}{z^2 - 2z\cos\omega T + 1}$
21.	Cosinc $\times t$	t cos wt	$\frac{\mathrm{s}^2-\omega^2}{(\mathrm{s}^2+\omega^2)^2}$	
22.	Exponentially decaying cosine	$exp(-\alpha t) \cos \omega t$	$\frac{s+\alpha}{(s+\alpha)^2+\omega^2}$	$\frac{z^2 - z \exp(-\alpha T) \cos \omega T}{z^2 - 2z \exp(-\alpha T) \cos \omega T + \exp(-2\alpha T)}$
23.	Trigonometric function *	$\sin \omega t - \omega t \cos \omega t$	$\frac{2\omega^3}{(s^2+\omega^2)^2}$	
24.	Exponentially decaying trig. fn.	$\frac{\exp(-\alpha t)}{\times [\sin \omega t - \omega t \cos \omega t]}$	$\frac{2\omega^3}{[(s+\alpha)^2+\omega^2]^2}$	
25.	Hyperbolic sine	sinh wt	$\frac{\omega}{s^2 - \omega^2}$	$\frac{z \sinh \omega T}{z^2 - 2z \cosh \omega T + 1}$
6.	Hyperbolic cosine	cosh wt	$\frac{s}{s^2 - \omega^2}$	$\frac{z(z-\cosh\omega T)}{z^2-2z\cosh\omega T+1}$

		Periodic Functions	
		f(t) to base t	F(s)
1. Rectangular wave (period T)			$\frac{1 + \tanh(\frac{1}{4}sT)}{2s}$
2. Half-wave rectified sine $(T = 2\pi/\omega)$			$\frac{\omega \exp(\frac{1}{2}sT) \operatorname{cosech}(\frac{1}{2}sT)}{2(s^2 + \omega^2)}$
3. Full-wave rectified sine $(T = 2\pi/\omega)$	$ \sin \omega t $		$\frac{\omega \coth(\frac{1}{2}sT)}{s^2 + \omega^2}$

Fourier Transforms

$X(f) = \int$	$\int_{-\infty}^{\infty} x(t) \exp(-j2\pi ft) dt$
$x(t) = \int_{-\infty}^{\infty}$	$\overset{\infty}{\to} X(f) \exp(j2\pi ft) df$
$\int_{-\infty}^{\infty} x(t) $	$ ^2 dt = \int_{-\infty}^{\infty} X(f) ^2 df$

Transf	orm	theorems

Name	Signal	Fourier transform
Superposition	$ax_1(t) + bx_2(t)$	$aX_1(f) + bX_2(f)$
Time delay	$x(t-t_0)$	$X(f) \exp(-j2\pi f t_0)$
Scale change	x(at)	$ a ^{-1}X(f/a)$
Frequency translation	$x(t) \exp(j2\pi f_0 t)$	$X(f-f_0)$
Modulation	$x(t) \cos 2\pi f_0 t$	$\frac{1}{2}X(f-f_0) + \frac{1}{2}X(f+f_0)$
Differentiation	$\frac{d^n x(t)}{dt^n}$	$(j2\pi f)^*X(f)$
Integration	$\int_{-\infty}^{t} x(t') \mathrm{d}t'$	$(j2\pi f)^{-1}X(f) + \frac{1}{2}X(0)\delta(f)$
Convolution	$\int_{-\infty}^{\infty} x_1(t-t') x_2(t') \mathrm{d}t'$	$X_1(f)X_2(f)$
30.5	$= \int_{-\infty}^{\infty} x_1(t') x_2(t-t') \mathrm{d}t'$	
Multiplication	$x_1(t)x_2(t)$	$\int_{-\infty}^{\infty} X_1(f-f')X_2(f') \mathrm{d}f'$
	144	$=\int_{-\infty}^{\infty}X_1(f')X_2(f-f')\mathrm{d}f'$

Fourier transform pairs			
Signal x(1)	Transform X(f)		
$1, \qquad \boxed{ \begin{vmatrix} A \\ -\frac{A}{\sqrt{2}} \end{vmatrix}}_{i}$	$A\tau \frac{\sin \pi f\tau}{\pi f\tau} \triangleq A\tau \operatorname{sinc} f\tau$		
2. B	$B\tau \frac{\sin^2 \pi f\tau}{(\pi f\tau)^2} \triangleq B\tau \operatorname{sinc}^2 f\tau$		
3. $\exp(-\alpha t)u(t)$	$\frac{1}{\alpha + j2nf}$		
4. $\exp(- t /\tau)$	$\frac{2\tau}{1+(2\pi f\tau)^2}$		
5. $\exp[-\pi(t/\tau)^2]$	$r \exp[-\pi (fr)^2]$		
$6. \frac{\sin 2\pi W t}{2\pi W t} \triangleq \operatorname{sinc} 2W t$	$-\frac{1}{2w}$		
7. $\exp[j(2\pi f_{c} + \phi)]$	$\exp(j\phi)\delta(f-f_c)$		
8. $\cos(2\pi f_{cl} + \phi)$	$\frac{1}{2}\delta(f-f_c)\exp(j\phi)+\frac{1}{2}\delta(f+f_c)\exp(-j\phi)$		
9. $\delta(t-t_0)$	$exp(-j2\pi f t_0)$		
$0.\sum_{m=-\infty}^{\infty}\delta(t-mT_3)$	$\frac{1}{T_3} \sum_{n=-\infty}^{\infty} \delta\left(f - \frac{n}{T_3}\right)$		
1. sgn $t = \begin{cases} +1, & t > 0 \\ -1, & t < 0 \end{cases}$	$-\frac{j}{\pi f}$		
2. $u(t) = \begin{cases} 1, t > 0 \\ 0, t < 0 \end{cases}$	$\frac{1}{\delta}\delta(f) + \frac{l}{j2\pi f}$		

Fourier Transforms © by John Wiley and Sons Inc, NY.