

9210-128		
Reference	boo	klet

Sample

Mollier Chart - Metric

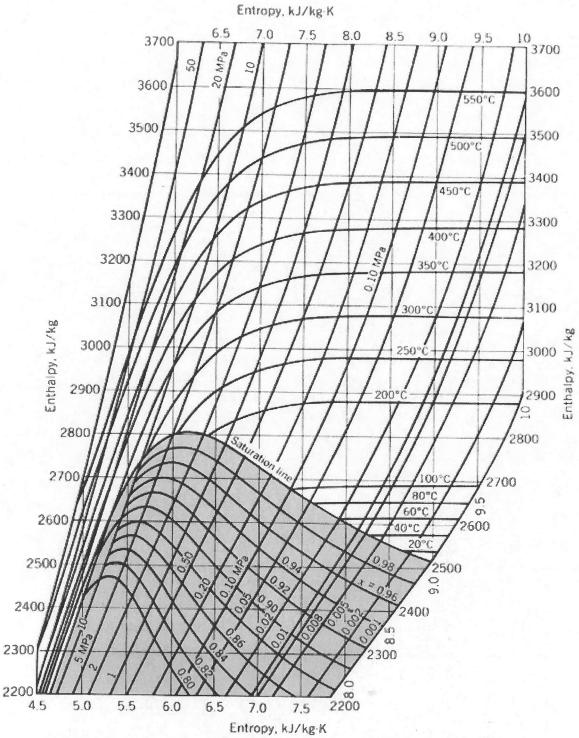
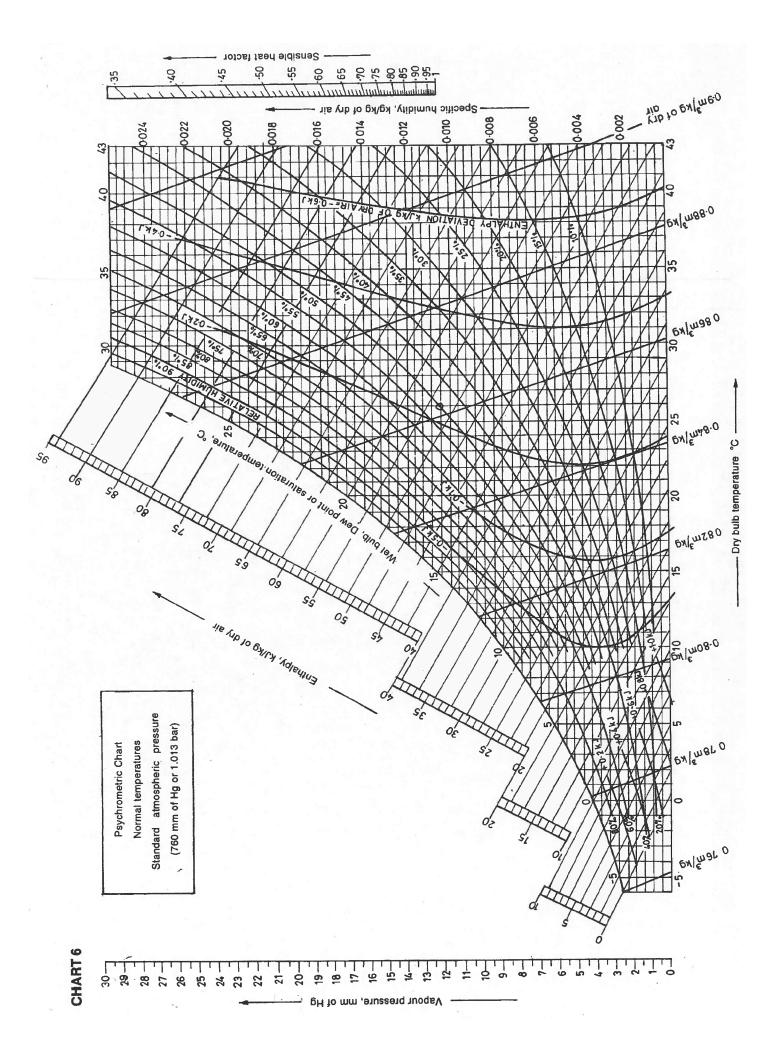



Figure A-8 Enthalpy-entropy diagram for water (SI units). Source: J. B. Jones and G. A. Hawkins, Engineering Thermodynamics, 2nd ed., Wiley, New York, 1986.

Thermodynamic and Transport Properties of Fluids

SI Units

G. F. C. Rogers and Y. R. Mayhew

Third Edition

OXFORD BASIL BLACKWELL 1981

NOTATION AND UNITS

a	m/s	velocity of sound
c_n, c_n	kJ/kg K	- specific heat (at constant p, constant v)
c_p, c_v G	kJ/kmol	- molar Gibbs function
h	kJ/kg	specific enthalpy
H	kJ/kmol	molar enthalpy
ΔH_0	kJ	- molar enthalpy of reaction $(H_{prod} - H_{react})$
k °	kW/m K	- thermal conductivity
<i>K</i>	(atm units)	 dissociation constant
M	kg/kmol	molar mass
p	bar	 absolute pressure
Pr		- Prandtl number, $c_p \mu/k$
R	kJ/kg K	- specific g : constant
R_0	kJ/kmol K	 universal gas constant
S	kJ/kg K	specific entropy
S	kJ/kmol K	molar entropy
t	°C	 Celsius temperature
T	K	 absolute temperature
u	kJ/kg	 specific internal energy
U	kJ/kmol	 molar internal energy
v	m ³ /kg	specific volume
z	m	 geometric altitude above sea level
γ		$-$ ratio of specific heats, c_p/c_v
λ	m	– mean free path
μ	$kg/m s = N s/m^2$	 dynamic viscosity
ν	m^2/s	– kinematic viscosity, μ/ρ
ρ	kg/m³	— density

Subscripts and Superscripts

```
    a - refers to a property at standard atmospheric pressure
    f - refers to a property of the saturated liquid
    g - refers to a property of the saturated vapour
    fg - refers to the change of phase at constant p
    i - refers to the property of the saturated solid
    s - refers to the saturation state
```

Saturated Water and Steam

<u>t</u>	$\frac{p_s}{r_s}$	<u>v</u> g	h _f	h_{fg}	h _g	<u>s</u> f	Sfg (1.1/1 1/1)	<u>s</u>
[°C]	[bar]	[m ³ /kg] 		[kJ/kg]			[kJ/kg K]	
0.01	0.006112	206.1	0*	2500.8	2500.8	0†	9.155	9.155
1	0.006566	192.6	4.2	2498.3	2502.5	0.015	9.113	9.128
	0.007054	179.9	8.4	2495.9	2504.3	0.031	9.071	9.102
2 3 4	0.007575	168.2	12.6	2493.6	2506.2	0.046	9.030	9.076
4	0.008129	157.3	16.8	2491.3	2508.1	0.061	8.989	9.050
5	0.008719	147.1	21.0	2488.9	2509.9	0.076	8.948	9.024
6	0.009346	137.8	25.2	2486.6	2511.8	0.091	8.908	8.999
7	0.01001	129.1	29.4 33.6	2484.3 2481.9	2513.7 2515.5	0.106 0.121	8.868 8.828	8.974 8.949
8 9	0.01072 0.01147	121.0 113.4	33.6	2479.6	2515.5 2517.4	0.121	8.788	8.924
10	0.01227	106.4	42.0	2477.2	2519.2	0.151	8.749	8.900
11	0.01312	99.90	46.2	2474.9	2521.1	0.166	8.710	8.876
12	0.01401	93.83	50.4	2472.5	2522.9	0.180	8.671	8.851
13	0.01497	88.17	54.6	2470.2	2524.8	0.195	8.633	8.828
14	0.01597	82.89	58.8	2467.8	2526.6	0.210	8.594	8.804
15	0.01704	77.97	62.9	2465.5	2528.4	0.224	8.556	8.780
16	0.01817	73.38	67.1	2463.1	2530.2	0.239	8.518	8.757
17	0.01936	69.09	71.3 75.5	2460.8 2458.4	2532.1 2533.9	0.253 0.268	8.481 8.44 4	8.734 8.712
18 19	0.02063 0.02196	65.08 61.34	75.5 79.7	2456.0	2535.7	0.282	8.407	8.689
20	0.02337	57.84	83.9	2453.7	2537.6	0.296	8.370	8.666
21	0.02486	54.56	88.0	2451.4	2539.4	0.310	8.334	8.644
22	0.02642	51.49	92.2	2449.0	2541.2	0.325	8.297	8.622
23	0.02808	48.62	96.4	2446.6	2543.0	0.339	8.261	8.600
24	0.02982	45.92	100.6	2444.2	2544.8	0.353	8.226	8.579
25	0.03166	43.40	104.8	2441.8	2546.6	0.367	8.190	8.557
26	0.03360	41.03	108.9	2439.5 2437.2	2548.4	0.381 0.395	8.15 5 8.12 0	8.536 8.515
27 28	0.03564 0.03778	38.81 36.73	113.1 117.3	2437.2	2550.3 2552.1	0.393	8.085	8.494
29	0.03778	34.77	121.5	2432.4	2553.9	0.423	8.050	8.473
30	0.04242	32.93	125.7	2430.0	2555.7	0.436	8.016	8.452
32	0.04754	29.57	134.0	2425.3	2559.3	0.464	7.948	8.412
34	0.05318	26.60	142.4	2420.5	2562.9	0.491	7.881	8.372
36	0.05940	23.97	150.7	2415.8	2566.5	0.518	7.814	8.332 8.294
38	0.06624	21.63	159.1	2411.0	2570.1	0.545	7.749	
40	0.07375	19.55	167.5	2406.2	2573.7	0.572 0.599	7.6 84 7.6 20	8.256 8.219
42 44	0.08198 0.09100	17.69 16.03	175.8 184.2	2401.4 2396.6	2577.2 2580.8	0.599	7.557	8.182
44 46	0.1009	14.56	192.5	2391.8	2584.3	0.651	7.494	8.145
48	0.1116	13.23	200.9	2387.0	2587.9	0.678	7.433	8.111
50	0.1233	12.04	209.3	2382.1	2591.4	0.704	7.371	8.075
55	0.1574	9.578	230.2	2370.1	2600.3	0.768	7.223	7.991
60	0.1992	7.678	251.1	2357.9	2609.0	0.831	7.078	7.909
65	0.2501	6.201	272.0 293.0	2345.7 2333.3	2617.7 2626.3	0.893 0.955	6.937 6.800	7.830 7.755
70	0.3116	5.045	İ			i		7.681
75 80	0.3855 0.4736	4.133 3.408	313.9 334.9	2320.8 2308.3	2634.7 2643.2	1.015 1.075	6.666 6.536	7.611
85	0.4736	2.828	355.9	2295.6	2651.5	1.134	6.410	7.544
90	0.7011	2.361	376.9	2282.8	2659.7	1.192	6.286	7.478
9 5	0.8453	1.982	398.0	2269.8	2667.8	1.250	6.166	7.416
100	1.01325	1.673	419.1	2256.7	2675.8	1.307	6.048	7.355

 $[\]dagger u$ and s are chosen to be zero for saturated liquid at the triple point.

Note: values of v_f can be found on p. 10.

Saturated Water and Steam

<u>p</u>	$\frac{t_s}{t_{s,\sigma}}$	<i>v_g</i>	u _f	u _g	h_f	h _{fg}	h _g	Sf	Sfg	Sg
[bar]	[°C]	[m ³ /kg]	[kJ/	kgj		[kJ/kg]		1	kJ/kg K]	
0.006112	0.01	206.1	0†	2375	0*	2501	2501	0†	9.155	9.155
0.010	7.0	129.2	29	2385	29	2485	2514	0.106	8.868	8.974
0.015	13.0	87.98	55	2393	55	2470	2525	0.196 0.261	8.631 8.462	8.827 8.723
0.020 0.025	17.5 21.1	67.01 54.26	73 88	2399 2403	73 88	2460 2451	2533 2539	0.312	8.330	8.642
0.030	24.1	45.67	101	2408	101	2444	2545	0.354	8.222	8.576
0.035	26.7	39.48	112	2412	112	2438	2550	0.391 0.422	8.130 8.051	8.521 8.473
0.040	29.0 31.0	34.80 31.14	121 130	2415 2418	121 130	2433 2428	2554 2558	0.422	7.980	8.431
0.045 0.050	32.9	28.20	138	2420	138	2423	2561	0.476	7.918	8.394
0.055	34.6	25.77	145	2422	145	2419	2564	0.500	7.860 7.808	8.360 8.329
0.060	36.2 37.7	23.74 22.02	152 158	2425 2427	152 158	2415 2412	2567 2570	0.521 0.541	7.760	8.301
0.065 0.070	37.7 39.0	20.53	163	2428	163	2409	2572	0.559	7.715	8.274
0.075	40.3	19.24	169	2430	169	2405	2574	0.576	7.674	8.250
0.080	41.5	18.10	174	2432	174	2402	2576	0.593	7.634	8.227
0.085	42.7	17.10	179	2434	179	2400	2579	0.608	7.598	8.206 8.186
0.090	43.8	16.20	183	2435	183	2397 2394	2580 2582	0.622 0.636	7.564 7.531	8.167
0.095 0.100	44.8 45.8	15.40 14.67	188 192	2436 2437	188 192	2392	2584	0.649	7.500	8.149
0.12	49.4	12.36	207	2442	207	2383	2590	0.696	7.389	8.085
0.14	52.6	10.69	220	2446	220	2376	2596	0.737	7.294 7.213	8.031 7.985
0.16	55.3	9.432	232 242	2450 2453	232 242	2369 2363	2601 2605	0.772	7.213	7.944
0.18 0.20	57.8 60.1	8.444 7.648	251	2456 2456	251	2358	2609	0.832	7.075	7.907
0.22	62.2	6.994	260	2459	260	2353	2613	0.858	7.016	7.874
0.24	64.1	6.445	268	2461	268	2348	2616	0.882	6.962 6.913	7.844 7.817
0.26	65.9	5.979	276 283	2464 2466	276 283	2343 2339	2619 2622	0.904 0.925	6.866	7.791
0.28 0.30	67.5 69.1	5.578 5.228	289	2468	289	2336	2625	0.944	6.823	7.767
0.32	70.6	4.921	295	2470	295	2332	2627	0.962	6.783	7.745
0.34	72.0	4.649	302	2472 2473	302 307	2328 2325	2630 2632	0.980	6.745 6.709	7.725 7.705
0.36 0.38	73.4 74.7	4.407 4.189	307	2475 2475	312	2323	2634	1.011	6.675	7.686
0.40	75.9	3.992	318	2476	318	2318	2636	1.026	6.643	7.669
0.42	77.1	3.814	323	2478	323	2315	2638	1.040	6.612	7.652
0.44	78.2	3.651	327	2479	327	2313	2640 2642	1.054 1.067	6.582 6.554	7.636 7.621
0.46	79.3 80.3	3.502 3.366	332	2481 2482	332 336	2310 2308	2644 2644	1.007	6.528	7.607
0.48 0.50	81.3	3.239	340	2483	340	2305	2645	1.091	6.502	7.593
0.55	83.7	2.964	351	2486	351	2298	2649	1.119	6.442 6.386	7.561 7.531
0.60	86.0	2.731	360 369	2489	360 369	2293 2288	2653 2657	1.145	6.335	7.504
0.65 0.70	88.0 90.0	2.535 2.364	377	2492 2494	377	2283	2660	1.192	6.286	7.478
0.75	91.8	2.217	384	2496	384	2278	2662	1.213	6.243	7.456
0.80	93.5	2.087	392	2498	392	2273	2665	1.233	6.201 6.162	7.434 7.414
0.85	95.2	1.972	399 405	2500 2502	399 405	2269 2266	2668 2671	1.252 1.270	6.124	7.394
0.90 0.95	96.7 98.2	1.869 1.777	411	2502 2504	411	2262	2673	1.287	6.089	7.376
1.00	99.6	1.694	417	2506	417	2258	2675	1.303	6.056	7.359
	J J J J J		<u> </u>		<u> </u>			.		

$$\frac{h_f}{[kJ/kg]} = \frac{pv_f}{[kJ/kg]} = \frac{p}{[bar]} \times \frac{10^5[N]}{[m^2]} \times \frac{v_f}{[m^3/kg]} \times \left[\frac{m^3}{kg}\right] \times \frac{[kJ]}{10^3[N m]} \times \frac{1}{[kJ/kg]}$$

$$= \frac{p}{[bar]} \times \frac{v_f}{[m^3/kg]} \times 10^2 = 0.006112 \times 0.0010002 \times 10^2 = 0.0006112$$

Saturated Water and Steam

p	t_s	$v_{\mathbf{g}}$	u_f	u _g _	h_f	h_{fg}	h _g	Sf	Sfg	Sg
[bar]	[°C]	[m ³ /kg]	[kJ	/kg]		[kJ/kg]			kJ/kg K	
1.0	99.6	1.694	417	2506	417	2258	2675	1.303	6.056	7.359
1.1	102.3	1.549	429	2510	429	2251	2680	1.333	5.994	7.327
1.2 1.3	104.8 107.1	1.428 1.325	439 449	2512 2515	439	2244 2238	2683	1.361	5.937	7.298 7.271
1.3	107.1	1.323	458	2517	449 458	2232	2687 2690	1.387 1.411	5.884 5.835	7.246
1.5	111.4	1.159	467	2519	467	2226	2693	1.434	5.789	7.223
1.6	113.3	1.091	475	2521	475	2221	2696	1.455	5.747	7.202
1.7 1.8	115.2 116.9	1.031 0.9774	483 491	2524 2526	483 491	2216 2211	2699 2702	1.475 1.494	5.707 5.669	7.182 7.163
1.9	118.6	0.9292	498	2528	498	2206	2704	1.513	5.632	7.145
2.0	120.2	0.8856	505	2530	505	2202	2707	1.530	5.597	7.127
2.1	121.8	0.8461	511	2531	511	2198	2709	1.547	5.564	7.111
2.2 2.3	123.3 124.7	0.8100 0.7770	518 524	2533 2534	518 524	2193 2189	2711 2713	1.563 1.578	5.533 5.503	7.096 7.081
2.4	126.1	0.7466	530	2536	530	2185	2715	1.578	5.474	7.067
2.5	127.4	0.7186	535	2537	535	2182	2717	1.607	5.446	7.053
2.6	128.7	0.6927	541	2539	541	2178	2719	1.621	5.419	7.040
2.7 2.8	130.0 131.2	0.6686 0.6462	546 551	2540 2541	546 551	2174 2171	2720 2722	1.634 1.647	5.393 5.368	7.027 7.015
2.9	132.4	0.6253	556	2543	556	2168	2724	1.660	5.344	7.004
3.0	133.5	0.6057	561	2544	561	2164	2725	1.672	5.321	6.993
3.5	138.9	0.5241	584	2549	584	2148	2732	1.727	5.214	6.941
4.0 4.5	143.6 147.9	0.4623 0.4139	605 623	2554 2558	605	2134 2121	2739 2744	1.776 1.820	5.121 5.037	6.897 6.857
5.0	151.8	0.3748	639	2562	640	2109	2749	1.860	4.962	6.822
5.5	155.5	0.3427	655	2565	656	2097	2753	1.897	4.893	6.790
6	158.8	0.3156	669	2568	670	2087	2757	1.931	4.830	6.761
7 8	165.0 170.4	0.2728 0.2403	696 720	2573 2577	697 721	2067 2048	2764 2769	1.992 2.046	4.717 4.617	6.7 09 6.663
9	175.4	0.2149	742	2581	743	2031	2774	2.094	4.529	6 503 6 - 23
10	179.9	0.1944	762	2584	763	2015	2778	2.138	4.448	6.5 86
11	184.1	0.1774	780	2586	781	2000	2781	2.179	4.375	6.554
12 13	188.0 191.6	0.1632 0.1512	797 813	2588 2590	798 815	1986 1972	2784 2787	2.216 2.251	4.307 4.244	6.523 6.495
14	195.0	0.1408	828	2593	830	1960	2790	2.284	4.185	6.469
15	198.3	0.1317	843	2595	845	1947	2792	2.315	4.130	6.445
16	201.4	0.1237	857	2596	859	1935	2794	2.344	4.078	6.422
17 18	204.3 207.1	0.1167 0.1104	870 883	2597 2598	872 885	1923 1912	2795 2797	2.372 2.398	4.028 3.981	6.400 6.379
19	209.8	0.1104	895	2599	897	1901	2798	2.423	3.936	6.359
20	212.4	0.09957	907	2600	909	1890	2799	2.447	3.893	6.340
22	217.2	0.09069	928	2601	931	1870	2801	2.492	3.813	6.305
24	221.8 226.0	0.08323 0.07689	949	2602	952 972	1850	2802	2.534	3.738	6.272 6.242
26 28	230.0	0.07689	969 988	2603 2603	972	1831 1812	2803 2803	2.574 2.611	3.668 3.602	6.213
30	233.8	0.06665	1004	2603	1008	1795	2803	2.645	3.541	6.186
32	237.4	0.06246	1021	2603	1025	1778	2803	2.679	3.482	6.161
34 36	240.9 244.2	0.05875 0.05544	1038 1054	2603 2602	1042 1058	1761 1744	2803 2802	2.710 2.740	3.426 3.373	6.136 6.113
38	247.3	0.05344	1068	2602	1073	1729	2802	2.769	3.373	6.091
40	250.3	0.04977	1082	2602	1087	1714	2801	2.797	3.273	6.070
			<u> </u>					L		

Saturated Water and Steam

p	t_s		u_f	ug	h_f	h_{fg}	hg	Sf	Sfg	Sg
[bar]	[°C]	$[m^3/kg]$	[kJ/			[kJ/kg]			kJ/kg K)
40	250.3	0.04977	1082	2602	1087	1714	2801	2.797	3.273	6.070
42	253.2	0.04732	1097	2601	1102	1698	2800	2.823	3,226	6.049
44	256.0	0.04509	1109	2600	1115	1683	2798	2.849	3.180	6.029
46	258.8	0.04305	1123	2599	1129	1668	2797	2.874	3.136	6.010
48	261.4	0.04117	1136	2598	1142	1654	2796	2.897	3.094	5.991
50	263.9	0.03944	1149	2597	1155	1639	2794	2.921	3.052	5.973
55	269.9	0.03563	1178	2594	1185	1605	2790	2.976	2.955	5.931
60	275.6	0.03244	1206	2590	1214	1570	2784	3.027	2.863	5.890
65	280.8	0.02972	1232	2586	1241	1538	2779	3.076	2.775	5.851
70	285.8	0.02737	1258	2581	1267	1505	2772	3.122	2.692	5.814
75	290.5	0.02532	1283	2576	1293	1473	2766	3.166	2.613	5.779
80	295.0	0.02352	1306	2570	1317	1441	2758	3.207	2.537	5.744
85	299.2	0.02192	1329	2565	1341	1410	2751	3.248	2.463	5.711
90	303.3	0.02048	1351	2559	1364	1379	2743	3.286	2.393	5.679
95	307.2	0.01919	1372	2552	1386	1348	2734	3.324	2.323	5.647
100	311.0	0.01802	1393	2545	1408	1317	2725	3.360	2.255	5.615
105	314.6	0.01696	1414	2537	1429	1286	2715	3.395	2.189	5.584
110	318.0	0.01598	1434	2529	1450	1255	2705	3.430	2.123	5.553
115	321.4	0.01508	1454	2522	1471	1224	2695	3.463	2.060	5.523
120	324.6	0.01426	1473	2514	1491	1194	2685	3.496	1.997	5.493
125	327.8	0.01349	1492	2505	1511	1163	2674	3.529	1.934	5.463
130	330.8	0.01278	1511	2496	1531	1131	2662	3.561	1.872	5.433
135	333.8	0.01211	1530	2487	1551	1099	2650	3.592	1.811	5.403
140	336.6	0.01149	1548	2477	1571	1067	2638	3.623	1.750	5.373
145	339.4	0.01090	1567	2467	1591	1034	2625	3.654	1.689	5.343
150	342.1	0.01035	1585	2456	1610	1001	2611	3.685	1.627	5.312
155	344.8	0.00982	1604	2445	1630	967	2597	3.715	1.565	5.280
160	347.3	0.00932	1623	2433	1650	932	2582	3.746	1.502	5.248
165	349.8	0.00884	1641	2420	1670	895	2565	3.777	1.437	5.214
170	352.3	0.00838	1660	2406	1690	858	2548	3.808	1.373	5.181
175	354.6	0.00794	1679	2391	1711	819	2530	3.839	1.305	5.144
180	357.0	0.00751	1699	2375	1732	778	2510	3.872	1.236	5.108
185	359.2	0.00709	1719	2358	1754	735	2489	3.905	1.163	5.068
190	361.4	0.00668	1740	2339	1777	689	2466	3.941	1.086	5.027
195	363.6	0.00627	1762	2318	1801	639	2440	3.977	1.004	4.981
200	365.7	0.00585	1786	2294	1827	584	2411	4.014	0.914	4.928
202	366.5	0.00569	1796	2283	1838	560	2398	4.031	0.875	4.906
204	367.4	0.00552	1806	2271	1849	535	2384	4.049	0.835	4.884
206	368.2	0.00534	1817	2259	1861	508	2369	4.067	0.792	4.859
208	369.0	0.00517	1829	2245	1874	479	2353	4.087	0.745	4.832
210	369.8	0.00498	1842	2231	1889	447	2336	4.108	0.695	4.803
212	370.6	0.00479	1856	2214	1904	412	2316	4.131	0.640	4.771
214	371.4	0.00458	1871	2196	1921	373	2294	4.157	0.579	4.736
216	372.1	0.00436	1888	2174	1940	328	2268	4.186	0.508	4.694
218	372.9	0.00409	1911	2146	1965	270	2235	4.224	0.417	4.641
220	373.7	0.00368	1949	2097	2008	170	2178	4.289	0.263	4.552
221.2	374.15	0.00317	2014	2014	2084	0	2084	4.406	0.000	4.406

Superheated Steam

<i>p</i> /[bar] (<i>t</i> _/[°C])		$\frac{t}{[^{\circ}C]}$ 50	100	150	200	250	300	400	500
0	u=h-RT	บ น 2446 h 2595 s		2589 2784	2662 2880	2737 2978	2812 3077	2969 3280	3132 3489
0.006112 (0.01)	v_g 206.1 u_g 2375 h_g 2501 s_g 9.155	v 243.9 u 2446 h 2595 s 9.468	2517 2689	319.5 2589 2784 9.978	357.3 2662 2880 10.193	395.0 2737 2978 10.390	432.8 2812 3077 10.571	508.3 2969 3280 10.897	583.8 3132 3489 11.187
0.01 (7.0)	v_g 129.2 u_g 2385 h_g 2514 s_g 8.974	v 149.1 u 2446 h 2595 s 9.241	2517 2689	195.3 2589 2784 9.751	218.4 2662 2880 9.966	241.4 2737 2978 10.163	264.5 2812 3077 10.344	310.7 2969 3280 10.670	356.8 3132 3489 10.960
0.05 (32.9)	$ \begin{array}{ccc} v_g & 28.20 \\ u_g & 2420 \\ h_g & 2561 \\ s_g & 8.394 \end{array} $	v 29.78 u 2445 h 2594 s 8.490	2516 2688	39.04 2589 2784 9.008	43.66 2662 2880 9.223	48.28 2737 2978 9.420	52.90 2812 3077 9.601	62.13 2969 3280 9.927	71.36 3132 3489 10.217
0.1 (45.8)	$\begin{array}{ccc} v_g & 14.67 \\ u_g & 2437 \\ h_g & 2584 \\ s_g & 8.149 \end{array}$	v 14.87 u 2443 h 2592 s 8.173	2516 2688	19.51 2588 2783 8.688	21.83 2662 2880 8.903	24.14 2736 2977 9.100	26.45 2812 3077 9.281	31.06 2969 3280 9.607	35.68 3132 3489 9.897
0.5 (81.3)	$ \begin{array}{ccc} v_g & 3.239 \\ u_g & 2483 \\ h_g & 2645 \\ s_g & 7.593 \end{array} $	υ u h s	3.420 2512 2683 7.694	3.890 2585 2780 7.940	4.356 2660 2878 8.158	4.821 2735 2976 8.355	5.284 2812 3076 8.537	6.209 2969 3279 8.864	7.134 3132 3489 9.154
0.75 (91.8)	v_g 2.217 u_g 2496 h_g 2662 s_g 7.456	u h s	2.271 2510 2680 7.500	2.588 2585 2779 7.750	2.901 2659 2877 7.969	3.211 2734 2975 8.167	3.521 2811 3075 8.349	4.138 2969 3279 8.676	4.755 3132 3489 8.967
1 (99.6)	v_g 1.694 u_g 2506 h_g 2675 s_g 7.359	v u h s	1.696 2506 2676 7.360	1.937 2583 2777 7.614	2.173 2659 2876 7.834	2.406 2734 2975 8.033	2.639 2811 3075 8.215	3.103 2968 3278 8.543	3.565 3131 3488 8.834
1.01325 (100.0)	v_g 1.673 u_g 2506 h_g 2676 s_g 7.355	u h s		1.912 2583 2777 7.608	2.145 2659 2876 7.828	2.375 2734 2975 8.027	2.604 2811 3075 8.209	3.062 2968 3278 8.537	3.519 3131 3488 8.828
1.5 (111.4)	v_g 1.159 u_g 2519 h_g 2693 s_g 7.223	u h s		1.286 2580 2773 7.420	1.445 2656 2873 7.643	1.601 2733 2973 7.843	1.757 2809 3073 8.027	2.067 2967 3277 8.355	2.376 3131 3488 8.646
2 (120.2)	v_g 0.8856 u_g 2530 h_g 2707 s_g 7.127	υ u h s		0.9602 2578 2770 7.280	1.081 2655 2871 7.507	1.199 2731 2971 7.708	1.316 2809 3072 7.892	1.549 2967 3277 8.221	1.781 3131 3487 8.513
3 (133.5)	$v_g = 0.6057$ $u_g = 2544$ $h_g = 2725$ $s_g = 6.993$	u h s		0.6342 2572 2762 7.078	0.7166 2651 2866 7.312	0.7965 2729 2968 7.517	0.8754 2807 3070 7.702	1.031 2966 3275 8.032	1.187 3130 3486 8.324
4 (143.6)	$v_g = 0.4623$ $u_g = 2554$ $h_g = 2739$ $s_g = 6.897$	บ u h s		0.4710 2565 2753 6.929	0.5345 2648 2862 7.172	0.5953 2727 2965 7.379	0.6549 2805 3067 7.566	0.7725 2965 3274 7.898	0.8893 3129 3485 8.191

Superheated Steam

p/[bar] $(t_s/[^{\circ}C])$	1.	<u>t</u> [°C]	200	250	300	350	400	450	500	600
5 (151.8)	$v_g = 0.3748$ $u_g = 2562$ $h_g = 2749$ $s_g = 6.822$	บ u h s	0.4252 2644 2857 7.060	0.4745 2725 2962 7.271	0.5226 2804 3065 7.460	0.5701 2883 3168 7.633	0.6172 2963 3272 7.793	0.6641 3045 3377 7.944	0.7108 3129 3484 8.087	0.8040 3300 3702 8.351
6 (158.8)	$v_g = 0.3156$ $u_g = 2568$ $h_g = 2757$ $s_g = 6.761$	u h s	0.3522 2640 2851 6.968	0.3940 2722 2958 7.182	0.4344 2801 3062 7.373	0.4743 2881 3166 7.546	0.5136 2962 3270 7.707	0.5528 3044 3376 7.858	0.5919 3128 3483 8.001	0.6697 3299 3701 8.267
7 (165.0)	$v_g = 0.2728$ $u_g = 2573$ $h_g = 2764$ $s_g = 6.709$	u h s	0.3001 2636 2846 6.888	0.3364 2720 2955 7.106	0.3714 2800 3060 7.298	0.4058- 2880 3164 7.473	0.4397 2961 3269 7.634	0.4734 3043 3374 7.786	0.5069 3127 3482 7.929	0.5737 3298 3700 8.195
8 (170.4)	$\begin{array}{ccc} v_g & 0.2403 \\ u_g & 2577 \\ h_g & 2769 \\ s_g & 6.663 \end{array}$	u h s	0.2610 2631 2840 6.817	0.2933 2716 2951 7.040	0.3242 2798 3057 7.233	0.3544 2878 3162 7.409	0.3842 2960 3267 7.571	0.4138 3042 3373 7.723	0.4432 3126 3481 7.866	0.5018 3298 3699 8.132
9 (175.4)	$\begin{array}{c} v_g & 0.2149 \\ u_g & 2581 \\ h_g & 2774 \\ s_g & 6.623 \end{array}$	u h s	0.2305 2628 2835 6.753	0.2597 2714 2948 6.980	0.2874 2796 3055 7.176	0.3144 2877 3160 7.352	0.3410 2959 3266 7.515	0.3674 3041 3372 7.667	0.3937 3126 3480 7.811	0.4458 3298 3699 8.077
10 (179.9)	$\begin{array}{c} v_g & 0.1944 \\ u_g & 2584 \\ h_g & 2778 \\ s_g & 6.586 \end{array}$	u h s	0.2061 2623 2829 6.695	0.2328 2711 2944 .6.926	0.2580 2794 3052 7.124	0.2825 2875 3158 7.301	0.3065 2957 3264 7.464	0.3303 3040 3370 7.617	0.3540 3124 3478 7.761	0.4010 3297 3698 8.028
15 (198.3)	v _g 0.1317 u _g 2595 h _g 2792 s _g 6.445	u h s	0.1324 2597 2796 6.452	0.1520 2697 2925 6.711	0.1697 2784 3039 6.919	0.1865 2868 3148 7.102	0.2029 2952 3256 7.268	0.2191 3035 3364 7.423	0.2351 3120 3473 7.569	0.2667 3294 3694 7.838
20 (212.4)	$v_g = 0.0996$ $u_g = 2600$ $h_g = 2799$ $s_g = 6.340$	u h s		0.1115 2681 2904 6.547	0.1255 2774 3025 6.768	0.1386 2861 3138 6.957	0.1511 2946 3248 7.126	0.1634 3030 3357 7.283	0.1756 3116 3467 7.431	0.1995 3291 3690 7.701
30 (233.8)	υ _g 0.0666 μ _g 2603 μ _g 2803 s _g 6.186	u h s		0.0706 2646 2858 6.289	0.0812 2751 2995 6.541	0.0905 2845 3117 6.744	0.0993 2933 3231 6.921	0.1078 3020 3343 7.082	0.1161 3108 3456 7.233	0.1324 3285 3682 7.507
40 (250.3)	$\begin{array}{c cccc} & & & & & & & & \\ u_g & & 0.0498 & & & & \\ u_g & & 2602 & & & & \\ h_g & & 2801 & & & \\ s_g & 6.070 & & & & \end{array}$	u h s			0.0588 2728 2963 6.364	0.0664 2828 3094 6.584	0.0733 2921 3214 6.769	0.0800 3010 3330 6.935	0.0864 3099 3445 7.089	0.0988 3279 3674 7.368
50 (263.9)	$\begin{array}{c cccc} & s & & & & \\ & v_g & 0.0394 & & \\ & u_g & 2597 & & \\ & h_g & 2794 & & \\ & s_g & 5.973 & & \\ \end{array}$	u h s			0.0453 2700 2927 6.212	0.0519 2810 3070 6.451	0.0578 2907 3196 6.646	0.0632 3000 3316 6.818	0.0685 3090 3433 6.975	0.0786 3273 3666 7.258
60 (275.6)	v _g 0.0324 u _g 2590 h _g 2784 s _g 5.890	u h s			0.0362 2670 2887 6.071	0.0422 2792 3045 6.336	0.0473 2893 3177 6.541	0.0521 2988 3301 6.719	0.0566 3081 3421 6.879	0.0652 3266 3657 7.166
70 (285.8)	v _g 0.0274 u _g 2581 h _g 2772 s _g 5.814	u h s			0.0295 2634 2841 5.934	0.0352 2772 3018 6.231	0.0399 2879 3158 6.448	0.0441 2978 3287 6.632	0.0481 3073 3410 6.796	0.0556 3260 3649 7.088

Superheated Steam

p/[bar] $(t_s/[^{\circ}C])$	e de la companya della companya della companya de la companya della companya dell	<u>t</u> [°C]	350	375	400	425	450	500	600	700
80 (295.0)	$v_g = 0.02352$ $h_g = 2758$ $s_g = 5.744$	υ× 10² h s	2.994 2990 6.133	3.220 3067 6.255	3.428 3139 6.364	3.625 3207 6.463	3.812 3272 6.555	4.170 3398 6.723	4.839 3641 7.019	5.476 3881 7.279
90 (303.3)	$\begin{array}{cc} v_g & 0.02048 \\ h_g & 2743 \\ s_g & 5.679 \end{array}$	υ×10 ² h s	2.578 2959 6.039	2.794 3042 6.171	2.991 3118 6.286	3.173 3189 6.390	3.346 3256 6.484	3.673 3385 6.657	4.279 3633 6.958	4.852 3874 7.220
i00 (311.0)	$\begin{array}{cc} v_g & 0.01802 \\ h_g & 2725 \\ s_g & 5.615 \end{array}$	$\begin{array}{c c} v \times 10^2 \\ h \\ s\end{array}$	2.241 2926 5.947	2.453 3017 6.091	2.639 3097 6.213	2.812 3172 6.321	2.972 3241 6.419	3.275 3373 6.596	3.831 3624 6.902	4.353 3868 7.166
110 (318.0)	$ \begin{array}{ccc} v_g & 0.01598 \\ h_g & 2705 \\ s_g & 5.553 \end{array} $	$\begin{array}{c c} v \times 10^2 \\ h \\ s \end{array}$	1.960 2889 5.856	2.169 2989 6.014	2.350 3075 6.143	2.514 3153 6.257	2.666 3225 6.358	2.949 3360 6.539	3.465 3616 6.850	3.945 3862 7.117
120 (324.6)		$\begin{array}{c c} v \times 10^2 \\ h \\ s\end{array}$	1.719 2849 5.762	1.931 2960 5.937	2.107 3052 6.076	2.265 3134 6.195	2.410 3209 6.301	2.677 3348 6.487	3.159 3607 6.802	3.605 3856 7.072
130 (330.8)	$\begin{array}{cc} v_g & 0.01278 \\ h_g & 2662 \\ s_g & 5.433 \end{array}$	$\begin{array}{c c} v \times 10^2 \\ h \\ s \end{array}$	1.509 2804 5.664	1.726 2929 5.862	1.901 3028 6.011	2.053 3114 6.136	2.193 3192 6.246	2.447 3335 6.437	2.901 3599 6.758	3.318 3850 7.030
140 (336.6)	$ \begin{array}{ccc} \nu_g & 0.01149 \\ h_g & 2638 \\ s_g & 5.373 \end{array} $	$\begin{array}{c c} v \times 10^2 \\ h \\ s\end{array}$	1.321 2753 5.559	1.548 2896 5.784	1.722 3003 5.946	1.872 3093 6.079	2.006 3175 6.193	2.250 3322 6.390	2.679 3590 6.716	3.071 3843 6.991
150 (342.1)	$ \begin{array}{ccc} \nu_g & 0.01035 \\ h_g & 2611 \\ s_g & 5.312 \end{array} $	$\begin{array}{c c} v \times 10^2 \\ h \\ s \end{array}$	1.146 2693 5.443	1.391 2861 5.707	1.566 2977 5.883	1.714 3073 6.023	1.844 3157 6.142	2.078 3309 6.345	2.487 3581 6.677	2.857 3837 6.954
160 (347.3)	$\begin{array}{cc} v_g & 0.00932 \\ h_g & 2582 \\ s_g & 5.248 \end{array}$	$\begin{array}{c c} v \times 10^2 \\ h \\ s \end{array}$	0.976 2617 5.304	1.248 2821 5.626	1.427 2949 5.820	1.573 3051 5.968	1.702 3139 6.093	1.928 3295 6.301	2.319 3573 6.639	2.670 3831 6.919
170 (352.3)	$ \begin{array}{ll} \nu_g & 0.00838 \\ h_g & 2548 \\ s_g & 5.181 \end{array} $	$\begin{array}{c c} v \times 10^2 \\ h \\ s\end{array}$		1.117 2778 5.541	1.303 2920 5.756	1.449 3028 5.914	1.576 3121 6.044	1.796 3281 6.260	2.171 3564 6.603	2.506 3825 6.886
180 (357.0)	$ \begin{array}{ccc} v_g & 0.00751 \\ h_g & 2510 \\ s_g & 5.108 \end{array} $	$\begin{array}{c c} v \times 10^2 \\ h \\ s\end{array}$		0.997 2729 5.449	1.191 2888 5.691	1.338 3004 5.861	1.463 3102 5.997	1.678 3268 6.219	2.039 3555 6.569	2.359 3818 6.855
190 (361.4)	$\begin{array}{cc} v_g & 0.00668 \\ h_g & 2466 \\ s_g & 5.027 \end{array}$	$\begin{array}{c c} v \times 10^2 \\ h \\ s\end{array}$		0.882 2674 5.348	1.089 2855 5.625	1.238 2980 5.807	1.362 3082 5.950	1.572 3254 6.180	1.921 3546 6.536	2.228 3812 6.825
200 (365.7)	$ \begin{array}{ccc} \nu_g & 0.00585 \\ h_g & 2411 \\ s_g & 4.928 \end{array} $	$\begin{array}{c c} \nu \times 10^2 \\ h \\ s\end{array}$		0.768 2605 5.228	0.995 2819 5.556	1.147 2955 5.753	1.270 3062 5.904	1.477 3239 6.142	1.815 3537 6.505	2.110 3806 6.796
210 (369.8)	$\begin{array}{ccc} v_g & 0.00498 \\ h_g & 2336 \\ s_g & 4.803 \end{array}$	$\begin{array}{c c} v \times 10^2 \\ h \\ s \end{array}$		0.650 2500 5.050	0.908 2781 5.484	1.064 2928 5.699	1.187 3041 5.859	1.390 3225 6.105	1.719 3528 6.474	2.003 3799 6.768
220 (373.7)	$h_g = 0.00368$ $h_g = 2178$ $s_g = 4.552$	$\begin{array}{c c} v \times 10^{2} \\ h \\ s\end{array}$		0.450 2300 4.725	0.825 2738 5.409	0.987 2900 5.645	1.111 3020 5.813	1.312 3210 6.068	1.632 3519 6.444	1.906 3793 6.742
221.2 (374.15)	$egin{array}{ll} v_c & 0.00317 \\ h_c & 2084 \\ s_c & 4.406 \end{array}$	v × 10 ² h s	0.163 1637 3.708	0.351 2139 4.490	0.816 2733 5.398	0.978 2896 5.638	1.103 3017 5.807	1.303 3208 6.064	1.622 3518 6.441	1.895 3792 6.739

Linear interpolation is not accurate near the critical point.

Supercritical Steam

		• • • • • • • • • • • • • • • • • • • •								
$\frac{p}{[bar]}$	<i>t</i> [℃]	350	375	400	425	450	500	600	700	800
225	υ× 10² h s	0.163 1635 3.704	0.249 1980 4.470	0.786 2716 5.369	0.951 2885 5.616	1.076 3009 5.790	1.275 3203 6.050	1.591 3514 6.430	1.861 3790 6.729	2.109 4055 6.988
250	υ× 10² h s	0.160 1625 3.682	0.198 1850 4.026	0.601 2580 5.142	0.789 2807 5.474	0.917 2951 5.677	1.113 3165 5.962	1.412 3491 6.361	1.662 3774 6.667	1.890 4043 6.931
275	$v \times 10^2$ h s	0.158 1617 3.662	0.187 1814 3.985	0.419 2382 4.828	0.650 2718 5.320	0.786 2890 5.562	0.980 3125 5.878	1.265 3468 6.296	1.500 3758 6.610	1.710 4032 6.878
300	υ× 10 ² h s	0.155 1610 3.645	0.180 1791 3.933	0.282 2157 4.482	0.530 2614 5.157	0.674 2823 5.444	0.868 3084 5.795	1.143 3445 6.234	1.364 3742 6.557	1.561 4020 6.829
350	υ×10 ² h s	0.152 1599 3.614	0.171 1762 3.875	0.211 1992 4.219	0.343 2375 4.776	0.496 2673 5.197	0.693 2998 5.633	0.952 3397 6.120	1.152 3709 6.459	1.327 3997 6.741
400	υ× 10 ² h s	0.149 1590 3.588	0.164 1743 3.832	0.191 1935 4.119	0.255 2203 4.510	0.369 2514 4.947	0.562 2906 5.474	0.809 3348 6.014	0.993 3677 6.371	1.152 3974 6.662
450	$v \times 10^2$ <i>h s</i>	0.146 1583 3.565	0.160 1729 3.797	0.181 1901 4.056	0.219 2115 4.368	0.291 2380 4.740	0.463 2813 5.320	0.698 3299 5.914	0.870 3644 6.290	1.016 3951 6.590
500	v × 10 ² h s	0.144 1577 3.544	0.156 1717 3.768	0.173 1879 4.009	0.201 2064 4.279	0.249 2288 4.594	0.388 2722 5.176	0.611 3249 5.821	0.772 3612 6.214	0.908 3928 6.524
550	$\begin{array}{c} v \times 10^2 \\ h \\ s \end{array}$	0.143 1572 3.525	0.153 1709 3.742	0.168 1862 3.971	0.190 2030 4.218	0.224 2227 4.494	0.334 2641 5.047	0.540 3200 5.731	0.693 3579 6.144	0.820 3905 6.462
600	v × 10 ² h s	0.141 1568 3.506	0.151 1702 3.718	0.164 1848 3.939	0.182 2005 4.168	0.209 2184 4.419	0.295 2571 4.937	0.483 3152 5.648	0.627 35 4 8 6.077	0.747 3883 6.405
650	v × 10 ² h s	0.139 1565 3.489	0.148 1696 3.697	0.160 1837 3.910	0.176 1986 4.128	0.198 2151 4.360	0.267 2514 4.845	0.436 3106 5.568	0.572 3517 6.014	0.685 3860 6.352
700	v × 10 ² h s	0.138 1561 3.473	0.146 1691 3.678	0.157 1829 3.886	0.171 1971 4.093	0.189 2127 4.312	0.247 2468 4.769	0.397 3062 5.494	0.526 3486 5.955	0.633 3839 6.300
750	$\begin{array}{c c} v \times 10^2 \\ h \\ s \end{array}$	0.137 1559 3.459	0.145 1687 3.659	0.154 1821 3.863	0.167 1958 4.064	0.183 2107 4.272	0.231 2431 4.705	0.365 3021 5.425	0.486 3456 5.899	0.587 3817 6.252
800	$v \times 10^2$ h s	0.136 1557 3.444	0.143 1684 3.642	0.152 1815 3.842	0.163 1948 4.037	0.178 2091 4.237	0.219 2400 4.651	0.338 2983 5.361	0.452 3428 5.845	0.548 3797 6.206
900	v × 10² h s	0.133 1554 3.418	0.140 1678 3.612	0.148 1805 3.805	0.158 1932 3.991	0.169 2066 4.179	0.202 2353 4.563	0.296 2916 5.248	0.396 3373 5.746	0.484 3756 6.120
1000	$\begin{array}{c} v \times 10^2 \\ h \\ s \end{array}$	0.131 1552 3.394	0.138 1674 3.584	0.145 1798 3.773	0.153 1920 3.951	0.163 2048 4.131	0.189 2319 4.493	0.267 2860 5.153	0.354 3324 5.656	0.434 3718 6.042

Saturated Water and Steam

	p _s	v_f	c _{pf}	C _{Pg}	μ	μg	k_f	k _r	(D)	
[°C]		0 ⁻² [m³/kg]	[kJ/k			g/m sl	10 ⁻⁶ [k	W/m K]	$(Pr)_f$	(Pr) _g
0.01	0.006112	0.10002	4.210	1.86	1752	8.49	569	16.3	12.96	0.97
5	0.008719	0.10001	4.204	1.86	1501	8.66	578	16.7	10.92	0.96
10	0.01227	0.10003	4.193	1.86	1300	8.83	587	17.1	9.29	0.96
15	0.01704	0.10010	4.186	1.87	1136	9.00	595	17.5	7.99	0.96
20	0.02337	0.10018	4.183	1.87	1002	9,18	603	17.9	6.95	0.96
25	0.03166	0.10030	4.181	1.88	890	9.35	611	18.3	6.09	0.96
30	0.04242	0.10044	4.179	1.88	797	9.52	618	18.7	5.39	0.96
35	0.05622	0.10060	4.178	1.88	718	9.70	625	19.1	4.80	0.96
40	0.07375	0.10079	4.179	1.89	651	9.87	632	19.5	4.30	0.96
45	0.09582	0.10099	4.181	1.89	594	10.0	638	19.9	3.89	0.95
50	0.1233	0.1012	4.182	1.90	544	10.2	643	20.4	3.54	0.95
55	0.1574	0.1015	4.183	1.90	501	10.4	648	20.8	3.23	0.95
60	0.1992	0.1017	4.185	1.91	463	10.6	653	21.2	2.97	0.95
65	0.2501	0.1020	4.188	1.92	430	10.7	658	21.6	2.74	0.95
70	0.3116	0.1023	4.191	1.93	400	10.9	662	22.0	2.53	0.96
75	0.3855	0.1026	4.194	1.94	374	11.1	666	22.5	2.36	0.96
80	0.4736	0.1029	4.198	1.95	351	11.3	670	22.9	2.20	0.96
85	0.5780	0.1032	4.203	1.96	330	11.4	673	23.3	2.06	0.96
90	0.7011	0.1036	4.208	1.97	311	11.6	676	23.8	1.94	0.96
95	0.8453	0.1040	4.213	1.99	294	11.8	678	24.3	1.83	0.97
100	1.01325	0.1044	4.219	2.01	279	12.0	681	24.8	1.73	0.97
105	1.208	0.1048	4.226	2.03	265	12.2	683	25.3	1.64	0.98
110	1.433	0.1052	4.233	2.05	252	12.4	684	25.8	1.56	0.99
115	1.691	0.1056	4.240	2.07	241	12.6	686	26.3	1.49	0.99
120	1.985	0.1060	4.248	2.09	230	12.8	687	26.8	1.42	1.00
125	2.321	0.1065	4.26	2.12	220	13.0	687	27.3	1.36	1.01
130	2.701	0.1070	4.27	2.15	211	13.2	688	27.8	1.31	1.02
135	3.131	0.1075	4.28	2.18	203	13.4	688	28.3	1.26	1.03
140	3.614	0.1080	4.29	2.21	195	13.5	688	28.8	1.22	1.04
145	4.155	0.1085	4.30	2.25	188	13.7	687	29.4	1.18	1.05
150	4.760	0.1091	4.32	2.29	181	13.9	687	30.0	1.14	1.07
160	6.181	0.1102	4.35	2.38	169	14.2	684	31.3	1.07	1.09
170	7.920	0.1114	4.38	2.49	159	14.6	681	32.6	1.02	1.12
180	10.03	0.1128	4.42	2.62	149	15.0	676	34.1	0.97	1.15
190	12.55	0.1142	4.46	2.76	141	15.3	671	35.7	0.94	1.18
200	15.55	0.1157	4.51	2.91	134	15.7	665	37.5	0.91	1.22
210	19.08	0.1173	4.56	3.07	127	16.0	657	39.4	0.88	1.25
220	23.20	0.1190	4.63	3.25	121	16.3	648	41.5	0.86	1.28
230	27.98	0.1209	4.70	3.45	116	16.7	639	43.9	0.85	1.31
240	33.48	0.1229	4.78	3.68	111	17.1	628	46.5	0.84	1.35
250	39.78	0.1251	4.87	3.94	107	17.5	616	49.5	0.85	1.39
260	46.94	0.1276	4.98	4.22	103	17.9	603	52.8	0.85	1.43
270	55.05	0.1302	5.10	4.55	99	18.3	589	56.6	0.86	1.47
280	64.19	0.1332	5.24	4.98	96	18.8	574	61.0	0.88	1.53
290	74.45	0.1366	5.42	5.46	93	19.3	558	66.0	0.90	1.60
300 320 340 360 370	85.92 112.9 146.1 186.7 210.5	0.1404 0.1499 0.1639 0.1894 0.2225	5.65	6.18	90	19.8	541	72.0	0.94	1.70
374.15	221.2	0.317								

The values for saturated water can be used with good accuracy above saturation pressure. The values for saturated steam can be used with only moderate accuracy below saturation pressure at temperatures greater than 200 °C.

General Information for H₂O

Triple point: Thermodynamic temperature (by definition) = 273.16 K $\stackrel{\frown}{=}$ 0.01 °C $\stackrel{\frown}{=}$ 491.688 R $\stackrel{\frown}{=}$ 32.018 °F (hence 0 °C $\stackrel{\frown}{=}$ 273.15 K, 0 °F $\stackrel{\frown}{=}$ 459.67 R, 32 °F $\stackrel{\frown}{=}$ 491.67 R) Gas constant: $R = R_0/M = 8.3144/18.015 = 0.4615$ kJ/kg K

Compressed Water

	t/[°C]	0.01	100	200	250	300	350	374.15
$p/[bar]$ $(t_s/[^{\circ}C])$	p_s $v_f \times 10^2$ h_f s_f	0.006112 0.1000 0	1.01325 0.1044 419 1.307	15.55 0.1157 852 2.331	39.78 0.1251 1086 2.793	85.92 0.1404 1345 3.255	165.4 0.1741 1671 3.779	221.2 0.317 2084 4.430
100 (311.0)	$(\nu-\nu_f)\times 10^2$ $(h-h_f)$ $(s-s_f)$	-0.0005 +10 0.000	-0.0006 +7 -0.008	-0.0009 +4 -0.013	-0.0011 0 -0.014	-0.0007 -2 -0.007		
221.2 (374.15)	$ \begin{array}{c} (\upsilon - \upsilon_f) \times 10^2 \\ (h - h_f) \\ (s - s_f) \end{array} $	-0.0011 +22 +0.001	-0.0012 +17 -0.017	-0.0020 +9 -0.031	-0.0029 +1 -0.040	-0.0051 -12 -0.053	-0.0107 -34 -0.071	0 0 0
500	$ \begin{array}{c} (\upsilon - \upsilon_f) \times 10^2 \\ (h - h_f) \\ (s - s_f) \end{array} $	-0.0023 +49 0.000	-0.0024 +38 -0.037	$-0.0042 \\ +23 \\ -0.068$	0.0064 +8 0.091	-0.0117 -21 -0.134	-0.0298 -94 -0.235	-0.161 -369 -0.670
1000	$(\nu - \nu_f) \times 10^2$ $(h - h_f)$ $(s - s_f)$	-0.0044 +96 0.007	-0.0044 +76 -0.070	-0.0075 +51 -0.124	-0.0111 +28 -0.164	-0.0191 -17 -0.235	-0.0427 -119 -0.385	-0.180 -415 -0.853

Saturated Ice and Steam

<u>t</u> [°C]	$\frac{p_s}{[bar]}$	$\frac{v_i}{10^{-2}[m^3/kg]}$	$\frac{v_g}{[\mathrm{m}^3/\mathrm{kg}]}$	$\frac{u_i}{[kJ/$	<u>u_g</u> [kg]	$\frac{h_i}{[kJ]}$	h _g /kgl	$\frac{s_i}{[kJ/k]}$	s _g
0.01	0.006112	0.1091	206.1	-333.5	2374.7	-333.5	2500.8	-1.221	
-10	0.002598	0.1089	467.5	-354.2	2360.8	-354.2	2482.2	-1.298	
-20	0.001038	0.1087	1125	-374.1	2346.8	-374.1	2463.6	-1.375	
-30	0.0003809	0.1086	2946	-393.3	2332.9	-393.3	2445.1	-1.452	
-40	0.0001288	0.1084	8354	-411.8	2319.0	-411.8	2426.6	-1.530	

Isentropic Expansion of Steam—Approximate Relations

Wet equilibrium expansion:

 pv^n = constant, with $n \approx 1.135$ for steam initially dry saturated

Superheated and supersaturated expansion:

 pv^n = constant and $p/T^{n/(n-1)}$ = constant, with $n \approx 1.3$

Enthalpy drop
$$\frac{(h_2 - h_1)}{[kJ/kg]} = \left(\frac{h_1}{[kJ/kg]} - 1943\right) \left[\left(\frac{p_2}{p_1}\right)^{(n-1)/n} - 1\right]$$

Specific volume of supersaturated steam:

$$\frac{p}{[\text{bar}]} \times \frac{v}{[\text{m}^3/\text{kg}]} \times 10^2 = \frac{0.3}{1.3} \left(\frac{h}{[\text{kJ/kg}]} - 1943 \right)$$

Ammonia - NH₃ (Refrigerant 717)

		C-4-			Superhea	$t(t-t_s)$
	* * * * * * * * * * * * * * * * * * *	Sau	ration Values		50 K	100 K
<u>t</u>	p_s	$v_{\mathbf{g}}$	h_f h_g	$s_f s_g$	<u>h</u> s	hs
[°C]	[bar]	[m³/kg]	[kJ/kg]	[kJ/kg K]	[kJ/kg] [kJ/kg K]	[kJ/kg] [kJ/kg K]
-50	0.4089	2.625	-44.4 1373.3	-0.194 6.159	1479.8 6.592	1585.9 6.948
-45	0.5454	2.005	-22.3 1381.6	-0.096 6.057	1489.3 6.486	1596.1 6.839
-40	0.7177	1.552	0 1390.0	0 5.962	1498.6 6.387	1606.3 6.736
-35	0.9322	1.216	22.3 1397.9	0.095 5.872	1507.9 6.293	1616.3 6.639
-30	1.196	0.9633	44.7 1405.6	0.188 5.785	1517.0 6.203	1626.3 6.547
-28	1.317	0.8809	53.6 1408.5	0.224 5.751	1520.7 6.169	1630.3 6.512
-26	1.447	0.8058	62.6 1411.4	0.261 5.718	1524.3 6.135	1634.2 6.477
-24	1.588	0.7389	71.7 1414.3	0.297 5.686	1527.9 6.103	1638.2 6.444
$-22 \\ -20$	1.740 1.902	0.6783 0.6237	80.8 1417.3 89.8 1420.0	0.333 5.655 0.368 5.623	1531.4 6.071 1534.8 6.039	1642.2 6.411 1646.0 6.379
-20	1.902	0.0237	69.6 1420.0			
-18	2.077	0.5743	98.8 1422.7	0.404 5.593	1538.2 6.008	1650.0 6.347
-16	2.265	0.5296	107.9 1425.3	0.440 5.563	1541.7 5.978	1653.8 6.316
-14	2.465	0.4890	117.0 1427.9	0.475 5.533	1545.1 5.948	1657.7 6.286
-12	2.680	0.4521	126.2 1430.5	0.510 5.504 0.544 5.475	1548.5 5.919 1551.7 5.891	1661.5 6.256 1665.3 6.227
-10	2.908	0.4185	135.4 1433.0	0.344 3.473	1331.7 3.691	
- 8	3.153	0.3879	144.5 1435.3	0.579 5.447	1554.9 5.863	1669.0 6.199
- 6	3.413	0.3599	153.6 1437.6	0.613 5.419	1558.2 5.836	1672.8 6.171
- 4	3.691	0.3344	162.8 1439.9	0.647 5.392	1561.4 5.808	1676.4 6.143
- <u>2</u>	3.983	0.3110	172.0 1442.2	0.681 5.365	1564.6 5.782	1680.1 6.116 1683.9 6.090
0	4.295	0.2895	181.2 1444.4	0.715 5.340	1567.8 5.756	1083.9 0.090
2	4.625	0.2699	190.4 1446.5	0.749 5.314	1570.9 5.731	1687.5 6.065
4	4.975	0.2517	199.7 1448.5	0.782 5.288	1574.0 5.706	1691.2 6.040
6	5.346	0.2351	209.1 1450.6	0.816 5.263	1577.0 5.682	1694.9 6.015
_8	5.736	0.2198	218.5 1452.5	0.849 5.238	1580.1 5.658	1698.4 5.991
10	6.149	0.2056	227.8 1454.3	0.881 5.213	1583.1 5.634	1702.2 5.967
12	6.585	0.1926	237.2 1456.1	0.914 5.189	1586.0 5.611	1705.7 5.943
14	7.045	0.1805	246.6 1457.8	0.947 5.165	1588.9 5.588	1709.1 5.920
16	7.529	0.1693	256.0 1459.5	0.979 5.141	1591.7 5.565	1712.5 5.898
18	8.035	0.1590	265.5 1461.1	1.012 5.118	1594.4 5.543	1715.9 5.876
20	8.570	0.1494	275.1 1462.6	1.044 5.095	1597.2 5.521	1719.3 5.854
22	9.134	0.1405	284.6 1463.9	1.076 5.072	1600.0 5.499	1722.8 5.832
24	9.722	0.1322	294.1 1465.2	1.108 5.049	1602.7 5.478	1726.3 5.811
26	10.34	0.1245	303.7 1466.5	1.140 5.027	1605.3 5.458	1729.6 5.790
28	10.99	0.1173	313.4 1467.8	1.172 5.005	1608.0 5.437	1732.7 5.770
30	11.67	0.1106	323.1 1468.9	1.204 4.984	1610.5 5.417	1735.9 5.750
32	12.37	0.1044	332.8 1469.9	1.235 4.962	1613.0 5.397	1739.3 5.731
34	13.11	0.0986	342.5 1470.8	1.267 4.940	1615.4 5.378	1742.6 5.711
36	13.89	0.0931	352.3 1471.8	1.298 4.919	1617.8 5.358	1745.7 5.692
38	14.70	0.0880	362.1 1472.6	1.329 4.898	1620.1 5.340	1748.7 5.674
40	15.54	0.0833	371.9 1473.3	1.360 4.877	1622.4 5.321	1751.9 5.655
42	16.42	0.0788	381.8 1473.8	1.391 4.856	1624.6 5.302	1755.0 5.637
44	17.34	0.0746	391.8 1474.2	1.422 4.835	1626.8 5.284	1758.0 5.619
46	18.30	0.0706	401.8 1474.5	1.453 4.814	1629.0 5.266	1761.0 5.602
48	19.29	0.0670	411.9 1474.7	1.484 4.793 1.515 4.773	1631.1 5.248 1633.1 5.230	1764.0 5.584 1766.8 5.567
50	20.33	0.0635	421.9 1474.7	1.313 4.713	1033.1 3.230	1700.0 3.307

Critical point t_c = 132.4 °C, p_c = 113.0 bar. Molar mass M= 17.030 kg/kmol; further properties of the liquid are given on p. 15.

Dichlorodifluoromethane – CF_2Cl_2 (Refrigerant 12)

Saturation Values							Superheat $(t-t_s)$			
		Jatu	i ation va	iues	.		15	K	30	K
t	<i>p</i> _s	$v_{m{g}}$	h_f	h_g	Sr	Sg	h	s	h	S
[°C]	[bar]	$\overline{[m^3/kg]}$		/kg]	[kJ/k		[kJ/kg]	kJ/kg K l	[kJ/kg]	kJ/kg K l
-100	0.0118	10.100	-51.84	142.00	-0.2567	0.8628	148.89	0.9019	156.10	0.9428
- 95 - 90	0.0181 0.0284	6.585 4.416	-47.56 -43.28	144.22 146.46	-0.2323 -0.2086	0.8442 0.8274	151.23 153.59	0.8830 0.8649	158.55 161.02	0.9195 0.901 0
- 85	0.0424	3.037	-39.00	148.73	-0.1856	0.8122	155.98	0.8493	163.52	0.8851
- 80	0.0617	2.138	-34.72	151.02	-0.1631	0.7985	158.39	0.8351	166.04	0.8706
- 75	0.0879	1.538	-30.43	153.32	-0.1412	0.7861	160.82	0.8226	168.57	0.8578
- 70 - 65	0.1227 0.1680	1.127 0.8412	-26.13 -21.81	155.63 157.96	-0.1198 -0.0988	0.7749 0.7649	163.26 165.70	0.8110 0.8008	171.12 173.68	0.8459 0.8355
- 60	0.2262	0.6379	-17.49	160.29	-0.0783	0.7558	168.15	0.7915	176.26	0.8259
- 55	0.2998	0.4910	-13.14	162.62	-0.0582	0.7475	170.60	0.7830	178.84	0.8172
- 50	0.3915	0.3831	- 8.78	164.95	-0.0384	0.7401	173.07	0.7753	181.43	0.8093
- 45	0.5044	0.3027	- 4.40	167.28	-0.0190	0.7335	175.54	0.7685	184.01	0.8023
– 40	0.6417	0.2419	0	169.60	0	0.7274	178.00	0.7623	186.60	0.7959
- 35	0.8071	0.1954	4.42	171.90	0.0187	0.7219	180.45	0.7568	189.18	0.7902
-30	1.004	0.1594	8.86	174.20	0.0371	0.7170	182.90	0.7517	191.76	0.7851
-25	1.237	0.1312	13.33	176.48	0.0552	0.7127	185.33	0.7473	194.33	0.7805
- 20	1.509	0.1088	17.82	178.73	0.0731	0.7087	187.75	0.7432	196.89	0.7764
- 15	1.826	0.0910	22.33	180.97	0.0906	0.7051	190.15	0.7397	199.44	0.7728
- 10	2.191	0.0766	26.87	183.19	0.1080	0.7020	192.53	0.7365	201.97	0.7695
- 5	2.610		31.45	185.38	0.1251	0.6991	194.90	0.7336	204.49	0.7666
0	3.086	0.0554	36.05	187.53	0.1420	0.6966	197.25	0.7311	206.99	0.7641
5 10	3.626 4.233	0.0475 0.0409	40.69 45.37	189.66 191.74	0.1587 0.1752	0.6943 0.6921	199.56 201.85	0.7289 0.7268	209.47 211.92	0.7618 0.7598
15	4.914	0.0354	50.10	193.78	0.1915	0.6901	204.10	0.7251	214.35	0.7580
20	5.673	0.0308	54.87	195.78	0.2078	0.6885	206.32	0.7235	216.75	0.7565
25	6.516	0.0269	59.70	197.73	0.2239	0.6869	208.50	0.7220	219.11	0.7552
30	7.449	0.0235	64.59	199.62	0.2399	0.6853	210.63	0.7208	221.44	0.7540
35	8.477	0.0206	69.55	201.45	0.2559	0.6839	212.72	0.7196	223.73	0.7529
40	9.607	0.0182	74.59	203.20	0.2718	0.6825	214.76	0.7185	225.98	0.7519
45	10.84	0.0160	79.71	204.87	0.2877	0.6811	216.74	0.7175	228.18	0.7511
50	12.19	0.0142	84.94	206.45	0.3037	0.6797	218.64	0.7166	230.33	0.7503
55	13.66	0.0125	90.27	207.92	0.3197	0.6782	220.48	0.7156	232.42	0.7496
60	15.26	0.0111	95.74	209.26	0.3358	0.6765	222.23.	0.7146	234.45	0.7490
65	16.99	0.00985	101.36	210.46	0.3521	0.6747	223.89	0.7136	236.42	0.7484
70	18.86	0.00873	107.15	211.48	0.3686	0.6726	225.45 226.89	0.7125	238.32 240.13	0.7477 0.7470
75	20.88	0.00772	113.15	212.29	0.3854	0.6702	226.89	0.7113 0.7099	240.13	0.7470
80	23.05	0.00682 0.00601	119.39 125.93	212.83 213.04	0.4027	0.6673 0.6636	229.39	0.7084	243.50	0.7455
85	25.38									
90	27.89	0.00526	132.84	212.80	0.4389	0.6591	230.43	0.7067	245.03	0.7445
95	30.57	0.00456	140.23	211.94	0.4583	0.6531	231.30	0.7047	246.47 247.80	0.7435 0.7424
100	33.44	0.00390	148.32	210.12 206.57	0.4793	0.6449 0.6325	231.93	0.7023 0.6994	247.80	0.7424
105 110	36.51 39.79	0.00324 0.00246	157.52 169.55	206.57 197.99	0.5028 0.5334	0.6323	232.47	0.6964	250.10	
112	41.15	0.00179	183.43	183.43	0.5690	0.5690	232.80	0.6958	250.58	0.7394

Molar mass M = 120.91 kg/kmol; further properties of the liquid are given on p. 15.

Mercury – Hg

P	t_s	v_{g}	h_f	h_{fg}	h_g	Sf	Sfg	Sg
[bar]	[°C]	[m³/kg]		[kJ/kg]			[kJ/kg K	
0.0006	109.2	259.6	15.13	297.20	312.33	0.0466	0.7774	0.8240
0.0007	112.3	224.3	15.55	297.14	312.69	0.0477	0.7709	0.8186
0.0008	115.0	197.7	15.93	297.09	313.02	0.0487	0.7654	0.8141
0.0009 0.0010	117.5 119.7	176.8 160 .1	16.27 16.58	297.04 297.00	313.31 313.58	0.0496 0.0503	0.7604 0.7560	0.8100 0.8063
0.002	134.9	83.18	18.67	296.71	315.38	0.0556	0.7271	0.7827
0.004	151.5	43.29	20.93	296.40	317.33	0.0610	0.6981	0.7591
0.006	161.8	29.57	22.33	296.21	318.54	0.0643	0.6811	0.7454
0.008	169.4	22.57	23.37	296.06	319.43	0.0666	0.6690	0.7356
0.010	175.5	18.31	24.21	295.95	320.16	0.0685	0.6596	0.7281
0.02	195.6	9.570	26.94	295.57	322.51	0.0744	0.6305	0.7049
0.04	217.7	5.013	29.92	295.15	325.07	0.0806	0.6013	0.6819
0.06	231.6	3.438	31.81	294.89	326.70	0.0843	0.5842	0.6685
0.08	242.0	2.632 2.140	33.21	294.70	327.91	0.0870	0.5721	0.6591
0.10	250.3	2.140	34.33	294.54	328.87	0.0892	0.5627	0.6519
0.2	278.1	1.128	38.05	294.02	332.07	0.0961	0.5334	0.6295
0.4	309.1	0.5942	42.21	293.43	335.64	0.1034	0.5039	0.6073
0.6	329.0	0.4113	44.85	293.06	337.91	0.1078	0.4869	0.5947
0.8	343.9	0.3163	46.84	292.78	339.62	0.1110	0.4745	0.5855
1	356.1	0.2581	48.45	292.55	341.00	0.1136	0.4649	0.5785
2	397.1 423.8	0.1377	53.87	291.77	345.64	0.1218	0.4353	0.5571
3	423.8 444.1	0.09551 0.07378	57.38 60.03	291.27 290.89	348.65 350.92	0.1268 0.1305	0.4179 0.4056	0.5447 0.5361
2 3 4 5	460.7	0.06044	62.20	290.58	352.78	0.1334	0.3960	0.5294
- 6	474.9	0.05137	64.06	290.31	354.37	0.1359	0.3881	0.5240
6 7	487.3	0.04479	65.66	290.08	355.74	0.1380	0.3815	0.5195
8	498.4	0.03978	67.11	289.87	356.98	0.1398	0.3757	0.5155
9	508.5	0.03584	68.42	289.68	358.10	0.1415	0.3706	0.5121
10	517.8	0.03266	69.61	289.50	359.11	0.1429	0.3660	0.5089
12	534.4	0.02781	71.75	289.19	360.94	0.1455	0.3581	0.5036
14	549.0	0.02429	73.63	288.92	362.55	0.1478	0.3514	0.4992
16	562.0	0.02161	75.37	288.67	364.04	0.1498	0.3456	0.4954
18	574.0	0.01949	76.83	288.45	365.28	0.1515	0.3405	0.4920
20	584.9	0.01778	78.23	288.24	366.47	0.1531	0.3359	0.4890
22	595.1	0.01637	79.54	288.05	367.59	0.1546	0.3318	0.4864
24	604.6	0.01518	80.75	287.87	368.62	0.1559	0.3280	0.4839
26	613.5	0.01416	81.89	287.70	369.59	0.1571	0.3245	0.4816
28	622.0	0.01329	82.96	287.54	370.50	0.1583	0.3212	0.4795
30	630.0	0.01252	83.97	287.39	371.36	0.1594	0.3182	0.4776
35	648.5	0.01096	86.33	287.04	373.37	0.1619	0.3115	0.4734
40	665.1	0.00978	88.43	286.73	375.16	0.1641	0.3056	0.4697
45	680.3	0.00885	90.35	286.44	376.79	0.1660	0.3004	0.4664
50 55	694.4 707.4	0.00809 0.00746	92.11 93.76	286.18 285.93	378.29 379.69	0.1678 0.1694	0.2958 0.2916	0.4636 0.4610
60	719.7	0.00693	95.30	285.70	381.00	0.1709	0.2878	0.4587
65	731.3	0.00648	96.75	285.48	382.23	0.1703	0.2842	0.4565
70 70	742.3	0.00609	98.12	285.28	383.40	0.1723	0.2809	0.4545
75	752.7	0.00575	99.42	285.08	384.50	0.1748	0.2779	0.4527

 h_f and s_f are zero at 0 °C. Molar mass M = 200.59 kg/kmol; for superheated vapour $c_p = 0.1036$ kJ/kg K; further properties of the liquid are given on p. 15.

Miscellaneous Liquids, Vapours and Gases

	<i>T</i> /[K]	250	300	400	500	600	800	1000
Ammonia (NH ₃) sat. liquid t.p. = 195.4 K M = 17.030 kg/kmol	c_p ρ $\mu \times 10^6$ $k \times 10^6$	4.52 669 245 592	4.75 600 141 477	6.91 346 38 207				
$R-12 (CF_2CI_2)$ sat. liquid t.p. = 115.3 K M = 120.91 kg/kmol	c _p ρ μ × 10 ⁶ k × 10 ⁶	0.902 1468 336 86.8	0.980 1304 213 68.6					
Lead (Pb)-Bismuth (Bi) 44.5%–55.5% eutectic liquid m.p. 397 K	c_p p $\mu \times 10^6$ k		-	0.146 10570 3360 0.0109	0.146 10450 2340 0.0120	0.146 10330 1840 0.0129	0.146 10090 1330 0.0150	0.146 9840 1100 0.017
Mercury (Hg) liquid m.p. = 234.3 K M = 200.59 kg/kmol	c_p ρ $\mu \times 10^6$ k	0.141 13650 1880 0.0075	0.139 13530 1520 0.0081	0.137 13290 1190 0.0094	0.137 13050 1010 0.0107	0.137 12840 890 0.0128	0.138 12420 780 0.0137	
Potassium (K) liquid m.p. 336.8 K M = 39.098 kg/kmol	c_p ρ $\mu \times 10^6$ k	solid	0.710 860 solid 0.099	0.805 812 417 0.0465	0.786 789 319 0.0454	0.772 766 258 0.0425	0.768 721 179 0.0337	0.775 675 133 0.027
Sodium (Na) liquid m.p. 370.5 K M = 22.990 kg/kmol	c_p ρ $\mu \times 10^6$	1.179 977 solid 0.135	1.224 967 solid 0.135	1.369 921 610 0.086	1.315 897 420 0.080	1.277 872 320 0.074	1.273 823 230 0.063	1.277 774 180 0.059
Sodium-Potassium 22%—78% eutectic liquid m.p. 262 K	c _p ρ μ × 10 ⁶	solid	0.977 869 780 0.0222	0.929 845 467 0.0236	0.904 821 348 0.0249	0.886 797 277 0.0262	0.871 749 193 0.0287	0.882 700 146 0.031
Argon (Ar) 1 atm M = 39.948 kg/kmol	c_p ρ $\mu \times 10^6$ $k \times 10^6$	0,5203 1.947 19.74 15.15	0.5203 1.623 22.94 17.66	0.5203 1.217 28.67 22.27	0.5203 0.974 33.75 26.41	0.5203 0.811 38.38 30.16	0.5203 0.609 46.71 36.83	0.520. 0.487 54.21 42.66
Carbon dioxide (CO_2) 1 atm M = 44.010 kg/kmol	c_p p $\mu \times 10^6$ $k \times 10^6$	0.791 2.145 12.60 12.90	0.846 1.788 14.99 16.61	0.939 1.341 19.46 24.75	1.014 1.073 23.67 32.74	1.075 0.894 27.32 40.40	1.169 0.670 33.81 54.64	1.234 0.536 39.51 67.52
Helium (He) 1 atm M = 4.003 kg/kmol	$\begin{array}{c} c_p \\ \rho \\ \mu \times 10^6 \\ k \times 10^6 \end{array}$	5.193 0.1951 18.40 134.0	5.193 0.1626 20.80 149.8	5.193 0.1220 25.23 177.9	5.193 0.0976 29.30 202.6	5.193 0.0813 33.12 224.7	5.193 0.0610 40.19	5.193 0.0488 46.70
Hydrogen (H_2) 1 atm M = 2.016 kg/kmol	c_p ρ $\mu \times 10^6$ $k \times 10^6$	14.05 0.0983 7.92 156.1	14.31 0.0819 8.96 181.7	14.48 0.0614 10.87 228.1	14.51 0.0491 12.64 271.8	14.55 0.0409 14.29 314.7	14.69 0.0307 17.34 402.2	14.98 0.0240 20.13
Steam (H_2O) low pressures M = 18.015 kg/kmol	c_p $\mu \times 10^6$ $k \times 10^6$	1.855	1.864 9.42 18.8	1.901 13.2 26.6	1.954 17.3 35.7	2.015 21.3 46.3	2.147 29.5 70.8	2.288 37.6 97.9

The properties c_p , μ and k (and ρ for liquids) do not vary much with pressure: see also footnote on p.16.

Dry Air at Low Pressure

				···			at	l atm
$\frac{T}{[K]}$	<u>c_p</u> [k]/	$\frac{c_v}{(g K]}$	γ	$\frac{\mu}{10^{-5}[\text{kg/m s}]}$	$\frac{k}{10^{-5}[\text{kW/m K}]}$	Pr	$\frac{\rho}{[kg/m^3]}$	$\frac{v}{10^{-5}[m^2/s]}$
175	1.0023	0.7152	1.401	1.182	1.593	0.744	2.017	0.586
200	1.0025	0.7154	1.401	1.329	1.809	0.736	1.765	0.753
225 250	1.0027 1.0031	0.7156 0.7160	1.401 1.401	1.467 1.599	2.020 2.227	0.728 0.720	1.569 1.412	0.935 1.132
275	1.0031	0.7167	1.401	1.725	2.428	0.713	1.284	1.343
300	1.0049	0.7178	1.400	1.846	2.624	0.707	1.177	1.568
325 350	1.0063 1.0082	0.7192 0.7211	1.400 1.398	1.962 2.075	2.816 3.003	0.701 0.697	1.086 1.009	1.807 2.056
375	1.0106	0.7235	1.397	2.181	3.186	0.692	0.9413	2.317
400	1.0135	0.7264	1.395	2.286	3.365	0.688	0.8824	2.591
450	1.0206	0.7335	1.391	2.485	3.710	0.684	0.7844	3.168
500 550	1.0295 1.0398	0.7424 0.7527	1.387 1.381	2.670 2.849	4.041 4.357	0.680 0.680	0.7060 0.6418	3.782 4.439
600	1.0511	0.7640	1.376	3.017	4.661	0.680	0.5883	5.128
650	1.0629	0.7758	1.370	3.178	4.954	0.682	0.5430	5.853
700	1.0750	0.7879	1.364	3.332	5.236	0.684	0.5043	6.607
750 800	1.0870 1.0987	0.7999 0.8116	1.359 1.354	3.482 3.624	5.509 5.774	0.687 0.690	0.4706 0.4412	7.399 8.214
850	1.1101	0.8110	1.349	3.763	6.030	0.693	0.4153	9.061
900	1.1209	0.8338	1.344	3.897	6.276	0.696	0.3922	9.936
950	1.1313	0.8442	1.340	4.026	6.520	0.699	0.3716	10.83
1000 1050	1.1411 1.1502	0.8540 0.8631	1.336 1.333	4.153 4.276	6.754 6.985	0.702 0.704	0.3530 0.3362	11.76 12.72
1100	1.1589	0.8718	1.329	4.396	7.209	0.707	0.3209	13.70
1150	1.1670	0.8799	1.326	4.511	7.427	0.709	0.3069	14.70
1200	1.1746	0.8875	1.323	4.626	7.640	0.711	0.2941	15.73
1250 1300	1.1817 1.1884	0.8946 0.9013	1.321 1.319	4.736 4.846	7.849 8.054	0.713 0.715	0.2824 0.2715	16.77 17.85
1350	1.1946	0.9075	1.316	4.952	8.253	0.717	0.2615	18.94
1400	1.2005	0.9134	1.314	5.057	8.450	0.719	0.2521	20.06
1500	1.2112	0.9241	1.311	5.264	8.831	0.722	0.2353	22.36
1600 1700	1.2207 1.2293	0.9336 0.9422	1.308 1.305	5.457 5.646	9.199 9.554	0.724 0.726	0.2206	24.74 27.20
1800	1.2370	0.9499	1.302	5.829	9.899	0.728	0.1961	29.72
1900	1.2440	0.9569	1.300	6.008	10.233	0.730	0.1858	32.34
2000	1.2505	0.9634	1.298	<u> </u>			0.1765	_
2100 2200	1.2564 1.2619	0.9693 0.9748	1.296 1.295				0.1681 0.1604	_
2300	1.2669	0.9798	1.293	_			0.1535	
2400	1.2717	0.9846	1.292		-		0.1471	
2500	1.2762	0.9891	1.290				0.1412	_
2600 2700	1.2803 1.2843	0.9932 0.9972	1.289 1.288] _		_	0.1358 0.1307	_
2800	1.2881	1.0010	1.287		<u></u>	_	0.1261	
2900	1.2916	1.0045	1.286	-	·	_	0.1217	
3000	1.2949	1.0078	1.285				0.1177	

The values for air can also be used with reasonable accuracy for CO, N_2 and O_2 .

The values of the thermodynamic properties c_v and c_p on pp. 16 and 17 are those at zero pressure. The values for the gases are quite accurate over a wide range of pressure, but those for the vapours increase appreciably with pressure.

The transport properties μ and k for air are accurate over a wide range of pressure, except at such low pressures that the mean free path of the molecules is comparable to the distance between the solid surfaces containing the gas.

At high temperatures (>1500 K for air) dissociation becomes appreciable and pressure is a significant variable for both gases and vapours: the values on pp. 16 and 17 apply only to undissociated states.

Specific Heat c_p of Some Gases and Vapours

<i>T</i> /[K]	CO ₂	со	H ₂	N ₂	O ₂	H ₂ O	СН₄	C ₂ H ₄	C ₂ H ₆
175 200 225 250 275	0.709 0.735 0.763 0.791 0.819	1.039 1.039 1.039 1.039 1.040	13.12 13.53 13.83 14.05 14.20	1.039 1.039 1.039 1.039 1.039	0.910 0.910 0.911 0.913 0.915	1.850 1.851 1.852 1.855 1.859	2.083 2.087 2.121 2.156 2.191	1.241 1.260 1.316 1.380 1.453	1.535 1.651
300	0.846	1.040	14.31	1.040	0.918	1.864	2.226	1.535	1.766
325	0.871	1.041	14.38	1.040	0.923	1.871	2.293	1.621	1.878
350	0.895	1.043	14.43	1.041	0.928	1.880	2.365	1.709	1.987
375	0.918	1.045	14.46	1.042	0.934	1.890	2.442	1.799	2.095
400	0.939	1.048	14.48	1.044	0.941	1.901	2.525	1.891	2.199
450	0.978	1.054	14.50	1.049	0.956	1.926	2.703	2.063	2.402
500	1.014	1.064	14.51	1.056	0.972	1.954	2.889	2.227	2.596
550	1.046	1.075	14.53	1.065	0.988	1.984	3.074	2.378	2.782
600	1.075	1.087	14.55	1.075	1.003	2.015	3.256	2.519	2.958
650	1.102	1.100	14.57	1.086	L017	2.047	3.432	2.649	3.126
700	1.126	1.113	14.60	1.098	1.031	2.080	3.602	2.770	3.286
750	1.148	1.126	14.65	1.110	1.043	2.113	3.766	2.883	3.438
800	1.168	1.139	14.71	1.122	1.054	2.147	3.923	2.989	3.581
850	1.187	1.151	14.77	1.134	1.065	2.182	4.072	3.088	3.717
900	1.204	1.163	14.83	1.146	1.074	2.217	4.214	3.180	3.846
950	1.220	1.174	14.90	1.157	1.082	2.252	4.348	3.266	
1000	1.234	1.185	14.98	1.167	1.090	2.288	4.475	3.347	
1050	1.247	1.194	15.06	1.177	1.097	2.323	4.595	3.423	
1100	1.259	1.203	15.15	1.187	1.103	2.358	4.708	3.494	
1150	1.270	1.212	15.25	1.196	1.109	2.392	4.814	3.561	
1200 1250 1300	1.280 1.290 1.298	1.220 1.227 1.234	15.34 15.44 15.54	1.204 1.212 1.219	1.115 1.120 1.125	2.425 2.458 2.490	T/[K]	C ₆ H ₆	C ₈ H ₁₈
1350	1.306	1.240	15.65	1.226	1.130	2.521	250	0.850	1.308
1400	1.313	1.246	15.77	1.232	1.134	2.552	275	0.957	1.484
1500	1.326	1.257	16.02	1.244	1.143	2.609	300	1.060	1.656
1600	1.338	1.267	16.23	1.254	1.151	2.662	325	1.160	1.825
1700	1.348	1.275	16.44	1.263	1.158	2.711	350	1.255	1.979
1800	1.356	1.282	16.64	1.271	1.166	2.756	375	1.347	2.109
1900	1.364	1.288	16.83	1.278	1.173	2.798	400	1.435	2.218
2000	1.371	1.294	17.01	1.284	1.181	2.836	450	1.600	2.403
2100	1.377	1.299	17.18	1.290	1.188	2.872	500	1.752	2.608
2200	1.383	1.304	17.35	1.295	1.195	2.904	550	1.891	2.774
2300	1.388	1.308	17.50	1.300	1.202	2.934	600	2.018	2.924
2400	1.393	1.311	17.65	1.304	1.209	2.962	650	2.134	3.121
2500	1.397	1.315	17.80	1.307	1.216	2.987	700	2.239	3.232
2600	1.401	1.318	17.93	1.311	1.223	3.011	750	2.335	3.349
2700	1.404	1.321	18.06	1.314	1.230	3.033	800	2.422	3.465
2800	1.408	1.324	18.17	1.317	1.236	3.053	850	2.500	3.582
2900	1.411	1.326	18.28	1.320	1.243	3.072	900	2.571	3.673
3000 3500 4000 4500 5000	1.414 1.427 1.437 1.446 1.455	1.329 1.339 1.346 1.353 1.359	18.39 18.91 19.39 19.83 20.23	1.323 1.333 1.342 1.349 1.355	1.249 1.276 1.299 1.316 1.328	3.090 3.163 3.217 3.258 3.292			
5500 6000	1.465 1.476	1.365 1.370	20.61 20.96	1.362 1.369	1.337 1.344	3.322 3.350			

The specific heats of atomic H, N and O are given with adequate accuracy by $c_p = 2.5 R_0/M$ where M is the molar mass of the atomic species.

International Standard Atmosphere

z	p	T	,	ν	k	а	λ
[m]	[bar]	<u>[K]</u>	ρ/ρ_0	$10^{-5} [m^2/s]$	$10^{-5}[kW/m K]$	[m/s]	10^{-8} [m]
				-			
2500	1.3521	304.4	1.2631	1.207	2.661	349.8	5,251
-2000	1.2778	301.2	1.2067	1.253	2.636	347.9	5.497
-1500	1.2070	297.9	1.1522	1.301	2.611	346.0	5.757
-1000	1.1393	294.7	1.0996	1.352	2.585	344.1	6.032
- 500	1.0748	291.4	1.0489	1.405	2.560	342.2	6.324
0	1.01325	288.15	1.0000	1.461	2.534	340.3	6.633
500	0.9546	284.9	0.9529	1.520	2.509	338.4	6.961
1000	0.8988	281.7	0.9075	1.581	2.483	336.4	7.309
1500	0.8456	278.4	0.8638	1.646	2.457	334.5	7.679
2000	0.7950	275.2	0.8217	1.715	2.431	332.5	8.072
2500	0.7469	271.9	0.7812	1.787	2.405	330.6	8.491
3000	0.7012	268.7	0.7423	1.863	2.379	328.6	8.936
3500	0.6578	265.4	0.7048	1.943	2.353	326.6	9.411
4000	0.6166	262.2	0.6689	2.028	2.327	324.6	9.917
4500	0.5775	258.9	0.6343	2.117	2.301	322.6	10.46
5000	0.5405	255.7	0.6012	2.211	2.275	320.5	11.03
5500	0.5054	252.4	0.5694	2.311	2.248	318.5	11.65
6000	0.3034	249.2	0.5389	2.416	2.222	316.5	12.31
6500	0.4408	245.9	0.5096	2.528	2.195	314.4	13.02
7000	0.4111	242.7	0.4817	2.646	2.169	312.3	13.77
7500	0.3830	239.5	0.4549	2.771	2.142	310.2	14.58
8000	0.3565	236.2	0.4292	2.904	2.115	308.1	15.45
8500	0.3315	233.0	0.4047	3.046	2.088	306.0	16.39
9000	0.3080	229.7	0.3813	3.196	2.061	303.8	17.40
9500	0.2858	226.5	0.3589	3.355	2.034	301.7	18.48
10000	0.2650	223.3	0.3376	3.525	2.007	299.5	19.65
10500	0.2454	220.0	0.3172	3.706	1.980	297.4	20.91
11000	0.2270	216.8	0.2978	3.899	1.953	295.2	22.27
11500	0.2098	216.7	0.2755	4.213	1.952	295.1	24.08
12000	0.1940	216.7	0.2546	4.557	1.952	295.1	26.05
12500	0.1793	216.7	0.2354	4.930	1.952	295.1	28.18
13000	0.1658	216.7	0.2176	5.333	1.952	295.1	30.48
13500	0.1533	216.7	0.2012	5.768	1.952	295.1	32.97
14000	0.1417	216.7	0.1860	6.239	1.952	295.1	35.66
14500	0.1310	216.7	0.1720	6.749	1.952	295.1	38.57
15000	0.1211	216.7	0.1590	7.300	1.952	295.1	41.72
15500	0.1120	216.7	0.1470	7.895	1.952	295.1	45.13
16000	0.1035	216.7	0.1359	8.540	1.952	295.1	48.81
16500	0.09572	216.7	0.1256	9.237	1.952	295.1	52.79
17000	0.08850	216.7	0.1162	9.990	1.952	295.1	57.10
17500	0.08182	216.7	0.1074	10.805	1.952	295.1	61.76
18000	0.07565	216.7	0.09930	11.686	1.952	295.1	66.79
18500	0.07303	216.7	0.09182	12.639	1.952	295.1	72.24
19000	0.06467	216.7	0.09182	13.670	1.952	295.1	78.13
19500	0.05980	216.7	0.07850	14.784	1.952	295.1	84.50
20000	0.05529	216.7	0.07258	15.989	1.952	295.1	91.39
22000	0.04047	210 4	0.05266	22.201	1.968	296.4	126.0
22000	0.04047 0.02972	218.6 220.6	0.03266	30.743	1.985	290.4	173.1
24000		220.6	0.03832	30.743 42.439	2.001	297.7	237.2
26000	0.02188	222.5 224.5	0.02797	58.405	2.011	300.4	324.0
28000 30000	0.01616 0.01197	224.5 226.5	0.02047	80.134	2.034	301.7	441.3
32000	0.00889	228.5	0.01107	109.62	2.051	303.0	599.4
				L		<u> </u>	

Density at sea level $\rho_0\!=\!1.2250~kg/m^3$

SI - British Conversion Factors

The International System of Units (HMSO, 1977) may be consulted for the definitions of SI units, and British Standard 350 for comprehensive tables of conversion factors.

Exact values are printed in **bold type**.

Mass:
$$1 \text{ kg} = \frac{1}{0.45359237} \text{ lb} = 2.205 \text{ lb}$$

Length:
$$1 \text{ m} = \frac{1}{0.3048} \text{ ft} = 3.281 \text{ ft}$$

Volume:
$$1 \text{ m}^3 = 10^3 \text{ dm}^3 \text{ (litre)} = 35.31 \text{ ft}^3 = 220.0 \text{ UK gal}$$

Time:
$$1 \text{ s} = \frac{1}{60} \min = \frac{1}{3600} \text{ h}$$

Temperature unit: 1 K = 1.8 R (see p. 11 for definitions of units and scales)

Force: 1 N (or kg m/s²) =
$$10^5$$
 dyn = $\frac{1}{9.80665}$ kgf

$$=7.233 \text{ pdl} = \frac{7.233}{32.174} \text{ or } 0.2248 \text{ lbf}$$

Pressure p: 1 bar =
$$10^5$$
 N/m² (or Pa) = 14.50 lbf/in² = 750 mmHg = 10.20 mH₂O

Specific volume
$$v$$
: 1 m³/kg = 16.02 ft³/lb

Density p:
$$1 \text{ kg/m}^3 = 0.062 \text{ 43 lb/ft}^3$$

Energy:
$$1 \text{ kJ} = 10^3 \text{ N m} = \frac{1}{4.1868} \text{ kcal}_{\text{IT}} = 0.9478 \text{ Btu} = 737.6 \text{ ft lbf}$$

Power:
$$1 \text{ kW} = 1 \text{ kJ/s} = \frac{10^3}{9.80665} \text{ kgf m/s} = \frac{10^3}{9.80665 \times 75} \text{ metric hp}$$

= 737.6 ft lbf/s =
$$\frac{737.6}{550}$$
 or $\frac{1}{0.7457}$ British hp = 3412 Btu/h

Specific energy etc.
$$(u, h)$$
: 1 kJ/kg = $\frac{1}{2.326}$ Btu/lb = 0.4299 Btu/lb

Specific heat etc.
$$(c, R, s)$$
: 1 kJ/kg K = $\frac{1}{4.1868}$ Btu/lb R = 0.2388 Btu/lb R

Thermal conductivity
$$k$$
: 1 kW/m K = 577.8 Btu/ft h R

Heat transfer coefficient:
$$1 \text{ kW/m}^2 \text{ K} = 176.1 \text{ Btu/ft}^2 \text{ h R}$$

Dynamic viscosity
$$\mu$$
: 1 kg/m s = 1N s/m² = 1 Pa s = 10 dyn s/cm² (or poise)
= 2419 lb/ft h = 18.67 × 10⁻⁵ pdl h/ft²

Kinematic viscosity v:
$$1 \text{ m}^2/\text{s} = 10^4 \text{ cm}^2/\text{s}$$
 (or stokes) = 38 750 ft²/h

General Information

Standard acceleration: $g_n = 9.806 65 \text{ m/s}^2 = 32.1740 \text{ ft/s}^2$

Standard atmospheric pressure: 1 atm = 1.013 25 bar

 $=760 \text{ mmHg} = 10.33 \text{ mH}_2\text{O} = 1.0332 \text{ kgf/cm}^2$

 $=29.92 \text{ inHg} = 33.90 \text{ ftH}_2\text{O} = 14.696 \text{ lbf/in}^2$

Molar (universal) gas constant: $R_0 = 8.3144 \text{ kJ/kmol K}^{\dagger}$

= 1.986 Btu/lb-mol R = 1545 ft lbf/lb-mol R

1 kmol occupies 22.41 m³ at 1 atm and 0 °C

1 lb-mol occupies 359.0 ft³ at 1 atm and 32 °F

Composition of air:

	vol. analysis	grav. analysis
Nitrogen ($N_2 - 28.013 \text{ kg/kmol}$)	0.7809	0.7553
Oxygen $(O_2 - 31.999 \text{ kg/kmol})$	0.2095	0.2314
Argon (Ar -39.948 kg/kmol)	0.0093	0.0128
Carbon dioxide (CO ₂ -44.010 kg/kmol)	0.0003	0.0005

Molar mass M = 28.96 kg/kmolSpecific gas constant R = 0.2871 kJ/kg K= 0.068 56 Btu/lb R = 53.35 ft lbf/lb R

See p. 16 for other properties

For approximate calculations with air:

	vol. analysis	grav. analy
$N_2 - 28 kg/kmol$	0.79	0.767
$O_2 - 32 \text{ kg/kmol}$	0.21	0.233
N_2/O_2	3.76	3.29

Molar mass M = 29 kg/kmolSpecific gas constant R = 0.287 kJ/kg K

 $= 0.0685 \; Btu/lb \; R \quad = 53.3 \; ft \; lbf/lb \; R$

 $c_p = 1.005 \text{ kJ/kg K}$ = 0.240 Btu/lb R $c_v = 0.718 \text{ kJ/kg K}$ = 0.1715 Btu/lb R

 $c_v = \gamma = 1.40$

The Stefan-Boltzmann constant:

$$\sigma = 56.7 \times 10^{-12} \text{ kW/m}^2 \text{ K}^4 = 0.171 \times 10^{-8} \text{ Btu/ft}^2 \text{ h R}^4$$

[†] The kilomole (kmol) is the amount of substance of a system which contains as many elementary entities as there are atoms in 12 kg of carbon 12.

The elementary entities must be specified, but for problems involving mixtures of gases and combustion they will be molecules or atoms.

FOR USE WITH THESE TABLES

Enthalpy-Entropy Diagram for Steam

Pressure-Enthalpy Diagram for Refrigerant 12 (Dichlorodifluoromethane, CF₂Cl₂)

Pressure-Enthalpy Diagram for Ammonia (Refrigant 717, NH₃)

Prepared by D. C. Hickson and F. R. Taylor

Diagram for Temperature Rise v. Fuel/Air Ratio for Combustion of a Gas Turbine Fuel

Prepared by G. F. C. Rogers and Y. R. Mayhew

BASIL BLACKWELL