

No additional data is attached

9210-137 Level 6 Graduate Diploma in Engineering

Electro techniques

Sample Paper

You should have the following for this examination • one answer book

- non-programmable calculator
- pen, pencil, ruler,
- drawing instruments

General instructions

- This examination paper is of **three hours** duration.
- This examination paper contains ten questions.
- Answer **any five** questions.
- All questions carry equal marks. The maximum marks for each section within a question are given against that section.
- An electronic, non-programmable calculator may be used, but the candidate **must** show clearly the steps prior to obtaining final numerical values.
- Drawings should be clear, in good proportion and in pencil. Do **not** use red ink.

1 a) Consider the circuit shown in Figure Q1a)

- -
- i) Draw the circuit diagram in the phasor domain.

ii) Determine the potential at point X using the nodal voltage method.

- b) Consider the circuit shown in Figure Q1b) L1 = 0.2 H, L2 = 0.5 H; $R = 80 \Omega$;
 - V1 = 100 V; V2 = 150 V; f = 50 Hz.

2

Figure Q1b)

	 i) If coefficient of coupling is 0.75, determine the mutual inductance. ii) Calculate the reactance of the circuit. iii) Use the mesh method to calculate currents in the circuit. 	(2 marks) (3 marks) (5 marks)				
a)	Describe briefly, the advantages of the use of three phase delta connected					
	systems over star connected systems.					
b)	A three-phase, Y-connected supply is connected to a delta connected balanced					
,	load via connecting wires. Voltage at phase A of the supply is $220 \angle 30^\circ$ V and					
	phase sequence is ACB. Per-phase impedance of the connecting wires is 4 + j3.					
	Per-phase value of the impedance of the load is 40 + j30 Ω .					
	i) Determine phase voltages of phases B and C.	(2 marks)				
	ii) Calculate line currents.	(7 marks)				
	iii) Calculate voltage and current through the load.	(6 marks)				

3	a)	Exp the	lain how the maximum power transfer from source to load is achieved with help of a transformer.	(2 marks)	
	b)	Wh at t	at are the measures taken to minimize the hysteresis and eddy current losses ne design stage of a transformer?	(4 marks)	
	c)	A 50 resi it ta i) ii) iii) iv)	0 kVA, 6600 V/200 V single-phase transformer has primary and secondary stance of 7.8 and 0.0085 respectively. When this transformer is at no load kes 0.326 A at 0.25 power factor lagging. Calculate the rated load current of the transformer. Determine the resistance of the transformer as seen from the secondary side. Calculate the total loss of the transformer at full load. If the full load has been reduced to 25% of the full load determine the officiency of the transformer (nowor factor is 0.85)	(2 marks) (3 marks) (5 marks) (4 marks)	
			enciency of the transformer (power factor is 0.85).	(4 marks)	
4	a)	List witl	three main disadvantages of a single-phase induction motor when compared n a three-phase induction motor of similar capacity.	(3 marks)	
	b)	In a slip ring induction moto, the starting torque can be improved by adding external resistance to the rotor circuit. However, beyond a certain value of this additional resistance, the starting torque starts to reduce. Explain the			
		rea	son for this.	(3 marks)	
	C)	i)	A 10 HP, 220 V, 50 Hz, four pole wound rotor induction motor has a rated speed of 1425 rpm. Per-phase parameters of a simplified equivalent circuit		
			Of the motor are $R_{S} = 0.2 \Omega \cdot XI = 0.84 \Omega \cdot Xm = 12 \Omega \cdot Rr' = 0.256 \Omega$		
		ii)	Determine the current taken from the supply.	(8 marks)	
		iii)	Calculate the power and power factor of the motor.	(6 marks)	
5	a)	Give	e reasons for following statements.		
		i)	Permanent magnet moving coils are used only for the measurement		
		::)	of DC quantities.	(3 marks)	
		II)	of AC quantities.	(3 marks)	
	b)	Wit	h the help of a suitable diagram, explain how two wattmeters are used to		
		measure the power of a three-phase three-wire system.			
	C)	i)	Prove that the torque (T) produced by a moving coil permanent magnet type instrument equal to the product of flux linkage through the coil and the		
		::)	current through the coil.	(6 marks)	
		11)	Number of turns : 100		
			Depth of the coil: 3 cm		
			Width of the coil: 2.5 cm		
			Flux density in the air gap: 0.15 Wb/m2		
			maximum current that can be measured by this instrument?	(4 marks)	
				(

6 a) Determine the output signals of circuits shown in Figure Q5ai) and Q5aii) for a sine wave input signal.

i)

(4 marks)

ii)

Figure Q5aii)

(4 marks)

(3 marks) (3 marks) (3 marks)

(3 marks)

b) A voltage regulator circuit is shown in Figure Q5b). Determine the following for $R = 1k\Omega$ and $R = 3k\Omega$.

i)	Voltage across load.
ii)	Voltage across series resistor.
iii)	Current through Zener diode.

iv) Power dissipation across Zener diode.

- State **three** BJT transistors biasing techniques. Sketch the relevant electronics circuits. 7 i) a)
 - ii)
 - Determine the Thevenin's equivalent circuit of the amplifier circuit shown i) b) in Figure Q6b).

(3 marks) (3 marks)

(4 marks)

Figure Q6b)

		ii) Current gain of the amplifier is 150; hence find the collector current and collector emitter voltage of the circuit.	(10 marks)
8	a) b) c)	 State three characteristics of an operational amplifier. Sketch a summing amplifier circuit using an operational amplifier. i) An analogue to digital converter can convert maximum 5 V input signal into a 3-bit digital number. A proximity sensor in the circuit generates a signal from O mV to 10 mV to convert analogue signals to digital signals. Design a suitable 	(3 marks) (7 marks)
		electronic circuit.Find the resolution of the circuit.	(8 marks) (2 marks)
9	a)	Simplify the following Boolean expressions using Boolean algebra and K-map. i) $AB\overline{C} + A\overline{B}\overline{C} + ABC + A\overline{B}C$	(2 marks)
	b)	 ii) AC + BC + ABC + ABC i) Implement the following function using NOR gates having a maximum fan-in of three 	(2 marks)
		i) $f_1 = (\overline{A} + B)(C + D)(B + \overline{C})(A + D)(\overline{A} + C)$ ii) $f_2 = \overline{AB} + B\overline{CD} + A\overline{BD}$ ii) A device accepts numbers in the range 000 to 111 that represent 0 to 7. The output of the circuit is true if the inputs to the circuit represent a prime	(8 marks)
		number and is false otherwise. Design a circuit using AND, OR and NOT gates to carry out the function.	(8 marks)
10	a)	 State the state transition tables of the following flip flops. i) SR flip flop. ii) JK flip flop. iii) D flip flop. iii) T flip flop. 	(8 marks)
	b)	A 3-bit weighted resistor DAC has a $V_{ref} = 12$ V and a feedback resistor (R_f) = R. Find the resolution and the full-scale analogue output current.	(4 marks)
	C)	Design a 3-bit synchronous counter using D Flip-Flop and logic gates. You have to show the state diagram, state table, K-map, logic expressions and the circuit implementation very clearly.	(9 marks)
		וווטרוופוומוטוו עבו צ כופמווצ.	(o 111d1KS)