

# 9210-214 Level 7 Post Graduate Diploma in Engineering

Telecommunication systems engineering

### GUa d`Y'DUdYf

#### You should have the following for this examination • one answer book

No additional data is attached

- non-programmable calculator
- pens, pencils, ruler

#### **General instructions**

- This examination paper is of **three hours** duration.
- This paper contains **eight (08)** questions.
- Answer any five (05) questions.
- The marks allocated to each question or parts of the question are shown in the brackets in the right hand margin. They are given for guidelines only.
- An electronic calculator may be used but candidates must show sufficient steps to justify their answers.
- Drawings should be clear, in good proportion and in pencil.

| 1 | a)<br>b)<br>c)<br>d) | What is defined by the logical topology of a network?<br>How does the logical topology differ from the physical topology?<br>How can a single physical topology support multiple logical topologies?<br>Briefly describe the role of the access network and the transmission network<br>in telecommunications.<br>Compare and contrast the traditional local loop with the digital subscriber loop<br>in terms of the physical medium, length, available bandwidth, services provided,<br>and network side termination.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (3 marks)<br>(5 marks)<br>(3 marks)<br>(4 marks)<br>(5 marks)                                        |
|---|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 2 | a)                   | <ul> <li>The amplitude of a message signal, m(t) is varied in the range of ±m. The signal is sampled at the Nyquist rate and uses linear quantization. The amplitude range is divided into L uniformly spaced intervals. State any assumptions you make in answering the questions below.</li> <li>i) Prove that the mean square quantization error is given by,<br/>- m<sup>2</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                      |
|   |                      | $q^2 = \frac{1}{3L^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (5 marks)                                                                                            |
|   |                      | ii) Prove that the peak signal to average quantization noise ratio is given by,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                      |
|   |                      | $\left(\frac{S_0}{N_q}\right)_{peak} = 3L^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (4 marks)                                                                                            |
|   | b)                   | <ul> <li>Consider an audio signal with spectral components limited to the frequency band 300 to 3300 Hz. Assume that a sampling rate of 8000 samples/s will be used to generate a Pulse Code Modulated (PCM) signal. The ratio of peak signal power to average quantization noise power at the output needs to be 30 dB.</li> <li>i) What is the minimum number of uniform quantization levels needed, and what is the minimum number of bits per sample needed?</li> <li>ii) Calculate the system bandwidth required for the detection of such a PCM signal.</li> <li>iii) If we want to reproduce 1 hour of this waveform, calculate the number of sample that needs to be stored.</li> <li>iv) Calculate the required data rate in bits/s.</li> </ul>                                                                                                                                                                                                                                                                    | (4 marks)<br>(3 marks)<br>(2 marks)<br>(2 marks)                                                     |
| 3 | a)<br>b)<br>c)<br>d) | <ul> <li>State four (04) different services that can be provided by satellite systems.</li> <li>Briefly explain the attitude control of satellite system.</li> <li>Briefly explain about the station keeping in satellite system.</li> <li>A broadcasting satellite system is operating in the Ku band with a downlink frequency of 12 GHz. The ground station transmit power is 6 W and the available bandwidth is 3 MHz. The distance between the ground station and the satellite is 42000 km. The ground station is equipped with a 3 m diameter parabolic antenna with an aperture efficiency of 0.5. The antenna has a noise temperature of 35 K and it is matched to a receiver which has a noise temperature of 100K. Calculate,</li> <li>i) the gain of the ground station antenna</li> <li>ii) the free space loss of the downlink</li> <li>iii) the effective input radiated power (EIRP) of the system</li> <li>iv) the noise power density at the receiver</li> <li>v) noise power at the receiver.</li> </ul> | (4 marks)<br>(3 marks)<br>(3 marks)<br>(2 marks)<br>(2 marks)<br>(2 marks)<br>(2 marks)<br>(2 marks) |

| 4 | a)       | Compare and contrast the direct and external modulation in optical communication with appropriate sketches.                                                                                                                                                                                                                                          | (6 marks) |  |  |  |  |  |
|---|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|
|   | b)       | Illustrate the following concepts with appropriate diagrams and                                                                                                                                                                                                                                                                                      |           |  |  |  |  |  |
|   |          | <ul> <li>a brief explanation.</li> <li>i) Optical absorption.</li> <li>ii) Spontaneous emission.</li> <li>iii) Stimulated emission.</li> </ul>                                                                                                                                                                                                       |           |  |  |  |  |  |
|   | C)       | The bit rate of an optical link is 1 Gbps, the dispersion at 1.55 $\mu$ m is 17 ps/nm-km<br>and the attenuation is 0.25 dB/km. The transmitter has a spectral width of 1 nm,<br>and an output power of 0.5 mW. The receiver requires –30 dBm of input power<br>in order to achieve the desired bit error rate. Find the possible longest link length |           |  |  |  |  |  |
|   |          | and mention which impairment limit the link length. [Velocity of light in vacuum (c) = $3.0 \times 10^8 \text{ ms}^{-1}$ ]                                                                                                                                                                                                                           |           |  |  |  |  |  |
| 5 | a)<br>b) | Distinguish between 3G and 4G cellular networks.<br>Brouide a descriptive comparison between fixed channel allocation and dynamic                                                                                                                                                                                                                    |           |  |  |  |  |  |
|   |          | channel allocation.<br>Differentiate micro and macro diversity.<br>A cellular system has an allocation of 1.5 MHz of bandwidth in each direction, and<br>uses FDMA/FDD with 50 kHz channels. The area is covered by 20 hexagonal cells.                                                                                                              |           |  |  |  |  |  |
|   | C)       |                                                                                                                                                                                                                                                                                                                                                      |           |  |  |  |  |  |
|   | d)       |                                                                                                                                                                                                                                                                                                                                                      |           |  |  |  |  |  |
|   |          | i) if a 7- cell reuse pattern is used                                                                                                                                                                                                                                                                                                                |           |  |  |  |  |  |
|   |          | ii) if a 4- cell reuse pattern is used.                                                                                                                                                                                                                                                                                                              | (2 marks) |  |  |  |  |  |
| 6 | a)       | i) State four (04) types of handoffs.                                                                                                                                                                                                                                                                                                                |           |  |  |  |  |  |
|   |          | iii) Compare Direct Sequence Spread Spectrum (DS-SS) and Frequency Hopping                                                                                                                                                                                                                                                                           | (2 marks) |  |  |  |  |  |
|   |          | Spread Spectrum (FH-SS).                                                                                                                                                                                                                                                                                                                             |           |  |  |  |  |  |
|   | b)       | A time division multiplexed/time division duplex (TDM/TDD) data stream on<br>a certain RF carrier is shown in Figure Q6 b).                                                                                                                                                                                                                          |           |  |  |  |  |  |
|   |          |                                                                                                                                                                                                                                                                                                                                                      |           |  |  |  |  |  |

| SYNC   | CH01                         | CH02 | CH03 |  | CH60 | SYNC   | CH01    | C+                      | -160 |
|--------|------------------------------|------|------|--|------|--------|---------|-------------------------|------|
| ♦ bits | ♦ bits                       |      |      |  |      | € bits | 8 bits  |                         |      |
|        | Uplink frame (Data channels) |      |      |  |      | Dow    | nlink f | rame (Command channels) |      |

## Figure Q6 b)

|    | i)<br>ii)<br>iii)<br>i∨) | How many duplex users does this carrier support? Explain.<br>If the total frame duration is 250 μs, find the uplink data rate for each user.<br>Find the overall data rate on the downlink.<br>If a single user requires an uplink data rate of 64 kb/s, suggest a method |                        |  |  |
|----|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|
|    | ,                        | to provide this through the system.                                                                                                                                                                                                                                       | (3 marks)              |  |  |
| a) | i)<br>ii)                | State three (03) different types of cells found in cellular systems.<br>What is mobility management?                                                                                                                                                                      | (3 marks)<br>(2 marks) |  |  |
| b) | Brie<br>i)<br>ii)        | fly describe the following.<br>Cell splitting.<br>Cell sectoring.                                                                                                                                                                                                         | (3 marks)<br>(3 marks) |  |  |
| C) | Expl                     | ain in detail the fading effects in a wireless channel.                                                                                                                                                                                                                   | (9 marks)              |  |  |

7

| 8 | a) | Compare and Contrast Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA) and Code Division Multiple Access (CDMA).                                                                                                                                                                                                    | (6 marks) |
|---|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|   | b) | State two (02) different advantages of a wireless access system over a wire-line                                                                                                                                                                                                                                                                  |           |
|   |    | access system.                                                                                                                                                                                                                                                                                                                                    | (2 marks) |
|   | C) | A cable-television operator uses an optical bus to distribute video channels to its<br>subscribers. Each receiver needs a minimum of 100 nW to operate satisfactorily.<br>Optical taps couple 5% of the power to each subscriber. Assuming a 0.5 dB insertion<br>loss for each tap and 1 mW transmitter power, estimate the number of subscribers |           |
|   |    | that can be added to the optical bus.                                                                                                                                                                                                                                                                                                             | (12marks) |