City
$\begin{array}{llllllllll}1 & 1 & 4 & 5 & 5 & 3 & 0 & 0 & 6 & 1\end{array}$
Guilds
1145-530 JUNE 2017
Level 3 Advanced Technical Certificate in Engineering/ Level 3 Advanced Technical Diploma in Engineering (540)/ Level 3 Advanced Technical Extended Diploma in Engineering (720) Level 3 Engineering - Theory Exam (1)

If provided, stick your candidate barcode label here.

Monday 19 June 2017
09:00-12:00

- If any additional answer sheets are used, entathe admonal ofnber of pages in this box.
- Please ensure that you staple addition aidnswer sheets tone back of this answer booklet, clearly labelling them with yo \AA val nanfenrollent number, centre number and qualification number in BLOCK PPTA
- All candidates need to use a bladolue pen. donot use a pencil or gel pen.
- If provided with source documents, the locurents will not be returned to City \& Guilds, and will be shredded. Do fowritefothe sgirce documents.
*I declare that I had neprior howlederef the questions in this assessment and that I will not dipprge tafany peșon any information about the questions.

You should havethe fegowingoor this examination

- non-progrân rableoriculata
- a pen withopue ordack int
- OUss through any work you do not want to be marked.

Round numbers to three significant figures where appropriate.

- Show all calculations. If you use a calculator, show sufficient steps to justify your answer.
- Write all your working out and answers in this booklet.
- If extra space is required then the blank pages at the back of the pack should be used, clearly identifying the question.

1 Define each of the following terms.
a) Plasticity.
b) Specific gravity.

2 State the names of two different non-metallic materials, giving a typical application of each.
Complete the table below with your responses.

Non-metallic material	Typical application

(Total marks 4)

3 A tensile test was carried out on a specimen of material with a cross sectional area of 78.55 mm and a gauge length of 90 mm . The results are shown in Figure 1.

Figure 1
Calculate the Young's modulus of the material.
You may find the following equation useful: $E=\sigma / \varepsilon$
\qquad
(Total marks 5)

4 Describe the stages involved in manufacturing a product from pre-preg composite materials.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5 a) State Faraday's Law.
b) Name three types of safety sensor used in robotic systems.
\qquad
\qquad
\qquad
c) State the meaning of integral control of a controller output.
\qquad
\qquad
\qquad
d) Explain how a true value input can be used in a measurement system.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
e) Explain why the magnitude and stability of the current must be considered when connecting a controller to a circuit.
\qquad

6 a) A flywheel of radius 0.2 m is turning at a frequency of 8 revolutions per second. Calculate the centripetal acceleration at the edge of the wheel.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b) A cylinder contains $1000 \mathrm{~cm}^{3}$ of gas at a pressure of 2 bar and a temperature of $20^{\circ} \mathrm{C}$.
A piston compresses the gas to $800 \mathrm{~cm}^{3}$. The temperature remains at $20^{\circ} \mathrm{C}$. Calculate the new pressure in the cylinder.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

7 a) State the first law of thermodynamics.
b) State what is meant by
i) static friction
\qquad
\qquad
\qquad
ii) simple harmonic motion.
(1 mark)
\qquad
\qquad
\qquad

8 a) Name two manufacturing techniques that use heat to mould plastic products.
b) Explain why jigs and templates are more commonly used for batch manufacture than for bespoke (one-off) manufacture.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

9 a) Describe how to output a plot of a drawing from a 3D CAD package.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b) Explain, using examples, why a design specification may include conflicting requirements.
\qquad
c) Discuss how the development of television and radio has contributed to social and economic development.
\qquad

10 a) A trolley has been designed to support a maximum mass of 108 newtons.
The maximum safe load is marked on the trolley as 18 newtons.
Calculate the safety factor.
\qquad
\qquad
\qquad
\qquad
b) A factory collected data on the operational life of the tools on one of their machines.

The time to failure of 50 tools was recorded as shown in the table and graph in Figure 2.

Hours	$0<10$	$10<20$	$20<30$	$30<40$	$40<50$	$50<60$
Number of failed tools	1	5	12	12	14	6

Hours

Figure 2
i) Calculate the mean number of hours until tool failure.
ii) Determine the median value of the tool life.
iii) To minimise the risk of damage to the product, the company have decided to change tools after a set time, before the average tool fails. They have decided that the operational life of the tool should be set at the value when 20% of the tools failed.
Determine this value for the operational life of the tool.
\qquad
\qquad
\qquad
\qquad

11 a) $A B C$ is a right angled triangle. For the angle at $C, \sin C=0.8$ and $\cos C=0.6$ Using the relationship between the sine and cosine, find the value of $\tan C$.
b) Convert $4 / 3 \pi$ radians into degrees.
\qquad
\qquad
\qquad
c) Convert the polar coordinates $\left(110,-35^{\circ}\right)$ to Cartesian form.
\qquad
\qquad
\qquad
\qquad
\qquad

12 a) Using the chain rule, differentiate $y=(2 x-4)^{6}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b) Divide $5 x^{2}+4 x-6$ by $(x+1)$ and find the remainder using the remainder theorem.
\qquad

13 A company is designing the frame of a new bicycle.
Discuss which factors are most important when selecting a material for the frame.
\qquad

Additional space
\qquad

