

2850-256 DECEMBER 2014 Level 2 Certificate/Diploma in Engineering (IVQ)

Principles of electrical and electronics technology

Tuesday 11 December 2014 09:30 – 11:30

You should have the following for this examination

one answer booknon-programmable calculator

General instructions

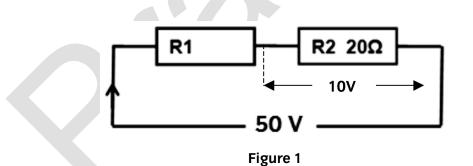
- All intermediate steps in calculations **must** be shown.
- All questions do **not** carry equal marks. The maximum marks for each section within a question are shown.
- Answer **all** questions.

- 1 a) State the basic SI unit for
 - i) magnetic flux density
 - ii) force
 - iii) inductance.
 - b) The basic SI unit for e.m.f. is the 'volt'. State the SI unit for a
 - i) million volts (10⁶)
 - ii) millionth of a volt (10^{-6}) .
- 2 a) With reference to the following statement, state the **two** missing words. 'Ohms' Law states that the current flowing through a circuit is ______ proportional to the voltage applied and ______ proportional to the circuit's resistance'.
 - b) With reference to Table 1, use Ohms' Law to determine the values of sections labelled
 - i) X
 - ii) Y
 - iii) Z.

(3 marks) (Total marks 5)

(3 marks)

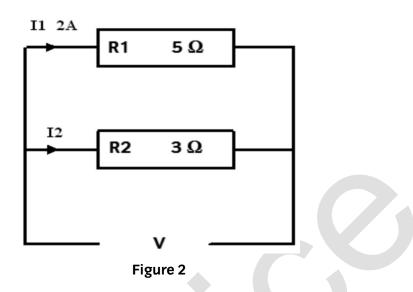
(2 marks) (Total marks 5)


(2 marks)

E	. –
C	15
Y	105
0.5	Z
-	Y 0.5

Table 1

- 3 With reference to the circuit shown in Figure 1, calculate
 - a) circuit current
 - b) the voltage across R1
 - c) the resistance of R1.


(2 marks) (1 mark) (1 mark) (Total marks 4)

- With reference to the circuit shown in Figure 2, calculate a) the supply voltage (V) 4

 - b) I2
 - the total resistance. C)

(2 marks) (2 marks) (2 marks) (Total marks 6)

- 5 With reference to the circuit shown in Figure 3, calculate the total
 - power consumed a)
 - energy used in 0.5 minutes. b)

(2 marks) (3 marks) (Total marks 5)

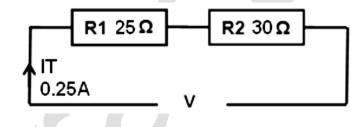
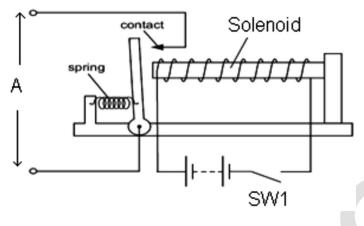
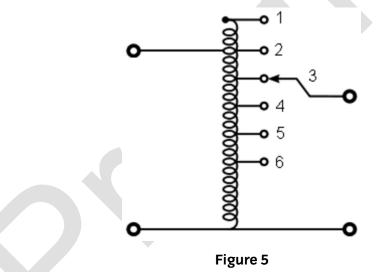



Figure 3

- 6 a) With reference to the circuit shown in Figure 4, describe the function of the solenoid when SW1 is
 - i) open
 - ii) closed.


(1 mark) (3 marks)

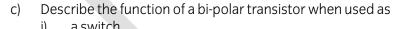


Figure 4

- b) With reference to Figure 5 that shows a transformer.
 - i) State the type of transformer.
 - ii) Describe the **main** difference between this type and a double wound type.
 - iii) State the purpose of the tapped connections 1-6.

(1 mark) (2 marks) (1 mark)

	I) a Switch	
	ii) an amplifier.	(4 marks)
d)	Describe the function of each of the following components of a rotating machine	
	that generates ac.	
	i) Magnetic field.	(1 mark)
	ii) Armature.	(2 marks)
	iii) Slip rings.	(1 mark)
e)	With the use of a simple circuit diagram, show the function of a Light Emitting	
	Diode (LED) supplied from a 10 Volt source.	(4 marks)
		(Total marks 20)

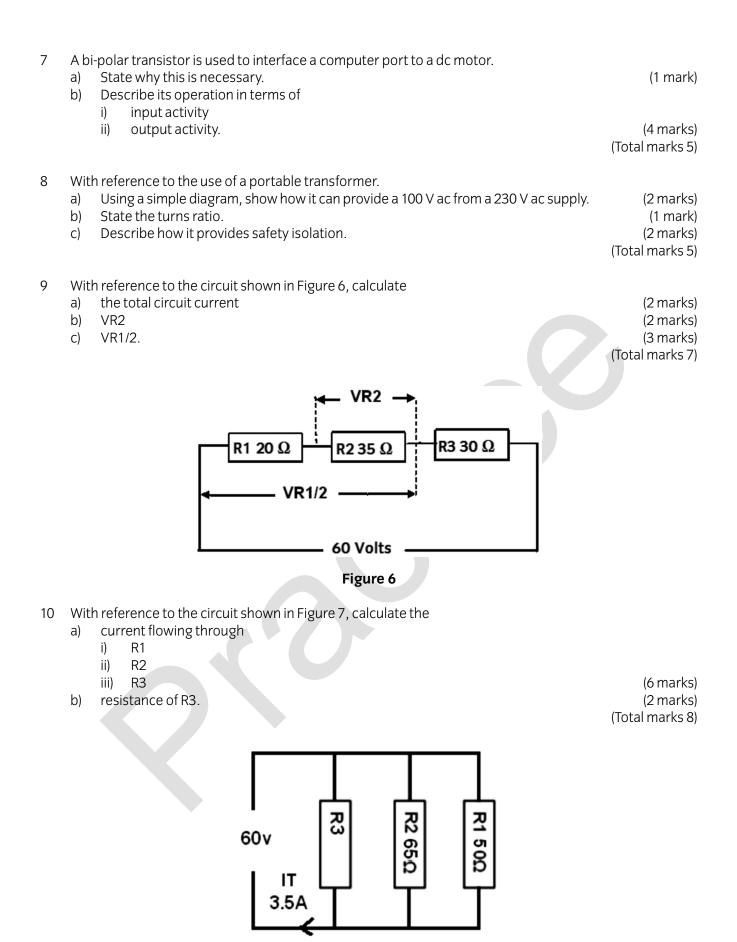
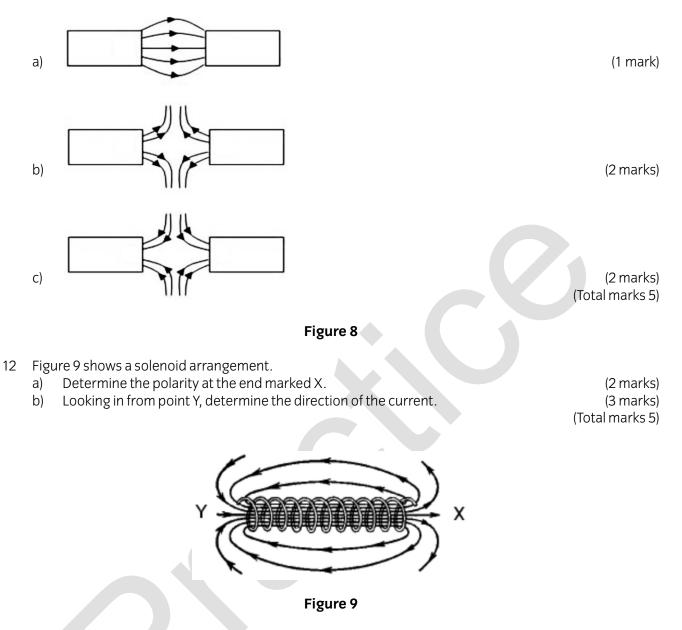



Figure 7

11 Determine the pole polarity, left and right, for **each** of the magnetic field patterns shown in Figure 8.

- 13 Describe the structure of **each** of the following types of capacitor.
 - a) Electrolytic.
 - b) Air spaced.
 - c) Paper.

(2 marks) (1 mark) (2 marks) (Total marks 5)

- 14 Sketch a sine wave, clearly indicating
 - a) **one** complete cycle
 - b) peak-to-peak value
 - c) root mean square value.

(2 marks) (1 mark) (2 marks) (Total marks 5)

- Figure 10 shows a voltage transformation system. Calculate the a) voltage across point A 15
 - - turns ratio of T2. b)

(2 marks) (3 marks) (Total marks 5)

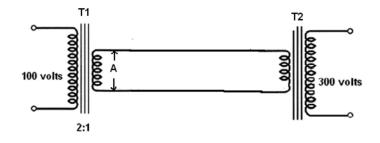


Figure 10

- 16 With reference to a bridge rectifier, describe how **each** of the following is achieved.
 - Full wave rectification. a)
 - Smoothing. b)

(3 marks) (2 marks) (Total marks 5)