

2850-351 Formulae sheet

Trigonometry

Cosine rule $a^2 = b^2 + c^2 - 2bcCosA$

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Area of triangle = $\frac{1}{2}a.b.\sin C$

Trigonometric identities

- $Sin(A \pm B) = SinACosB \pm Cos ASinB$
- $Cos(A \pm B) = Cos ACos B \pm SinASinB$

Numerical integration

Simpson's rule

$$\int_{a}^{b} y \cdot dx = \frac{1}{3} h\{ (y_0 + y_n) + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2}) \}$$

where
$$h = \frac{b-a}{n}$$
 and n is even

Trapezium rule

$$\int_{a}^{b} y \cdot dx = \frac{1}{2} h\{(y_0 + y_n) + 2(y_1 + y_2 + \dots y_{n-1})\} \text{ where } h = \frac{b - a}{n}$$

Volume of revolution around x axis

$$V = \int_a^b \pi y^2 dx$$

Standard deviation =
$$\sqrt{\left(\frac{\sum x^2 f}{\sum f}\right) - \left(mean\right)^2}$$

Complex numbers

$${r(\cos\theta + i \sin\theta)}n = rn(\cos n\theta + i \sin\theta)$$

Calculus

Differentiation

y = f(x)	$\frac{dy}{dx} = f'(x)$
lnx	$\frac{1}{x}$
e^{ax}	ae ^{ax}
Sinx	Cos x
Cos x	-Sinx
Tanx	Sec^2x

Product rule

If
$$y = uv$$
 then $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

Quotient rule

If
$$y = \frac{u}{v}$$
 then $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

Chain (or function of a function rule)

If
$$y = f(u)$$
 and $u = g(x)$ then $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$

f(x)	$\int f(x)dx$
x^n	$\frac{x^{n+1}}{n+1} + c$
$\frac{1}{x}$	lnx + c
Cosxdx	Sinx + c
Sinxdx	-Cosx + c
Sec^2xdx	tanx + c

2

By parts

$$\int u dv = uv - \int v du$$

Substitution

$$\int f(g(x))g'(x)dx = \int f(u)du$$