Level 4 Diploma in Advanced Manufacturing Engineering (2875-40)

March 2017 Version 2.1

Qualification at a glance

Subject area	Engineering
City & Guilds number	2875
Age group approved	19+
Entry requirements	N/A
Assessment	 Centre set and marked assignments Externally set, internally marked assignments
Fast track	N/A
Support materials	 Centre handbook Assessment pack Exemplar assignments Centre devised assignment writing guidance Recording forms Online tutor and learner support material
Registration and certification	Consult the Walled Garden/Online Catalogue for last dates

Title and level	City & Guilds number	Accreditation number
Level 4 Diploma in Mechanical Manufacturing Engineering	2875-40	600/6874/7
Level 4 Diploma in Electrical and Electronic Engineering	2875-40	600/6955/7
Level 4 Diploma in Aeronautical Engineering	2875-40	600/9042/X

Contents

1	Introduction	5
	Structure	6
2	Centre requirements	12
	Approval	12
	Candidate entry requirements	13
3	Delivering the qualification	14
	Initial assessment and induction	14
	Support materials	14
	Recording documents	14
4	Assessment	15
5	Units	20
Unit 401	Quality assurance and control	21
Unit 402	Human factors in the workplace	25
Unit 403	Engineering planning and scheduling	30
Unit 404	Statistical analysis for Engineers	33
Unit 405	Principles of mechanical component manufacture	36
Unit 406	Materials Engineering	40
Unit 407	Automated machining of materials	44
Unit 408	Introducing CAD/CAM systems in advanced manufacturing	49
Unit 409	Engineering mathematics	51
Unit 410	Industrial robotics	55
Unit 411	Statistical process control	59
Unit 412	Metal fabrication technology	62
Unit 413	Welding technology and practice	65
Unit 414	Quality assurance and testing of welded joints	68
Unit 415	Maintenance of engineering systems and equipment	71
Unit 416	Instrumentation and Control Principles	78
Unit 417	Engineering Procurement	81
Unit 418	Engineering design	84
Unit 420	Planning and implementing change within businesses	86
Unit 421	Personal and Professional Development	89
Unit 422	Project Management	93
Unit 423	Managing information and knowledge	96
Unit 425	Principles of electrical and electronic engineering	99
Unit 426	Data communication and networks	105

Unit 427	Understand uses and operation of electrical machines in engineering operations	112
Unit 428	Using electrical protection techniques for engineering operations	115
Unit 429	Electrical services and installation	118
Unit 430	Electrical supply and distribution	123
Unit 431	Testing and measurement of electronic and electrical systems	128
Unit 432	Programmable logic controllers	134
Unit 433	Designing analogue circuits	138
Unit 434	Designing sequential and combinational logic circuits	143
Unit 435	Microprocessor based systems	146
Unit 440	Fundamentals of airworthiness management	149
Unit 441	Integrated aircraft systems	154
Unit 442	Fault finding diagnosis	157
Unit 443	Communication and navigation systems	15 9
Unit 444	Efficient maintenance in aircraft operations	162
Unit 445	Principles of composite materials	165
Unit 446	Principles of composites manufacture	170
Unit 450	Developing business improvement plans	173
Unit 501	Work based project	176
Appendix 1	Sources of general information	179

1 Introduction

This document tells you what you need to do to deliver the qualifications:

Area	Description
Who are the qualifications for?	These qualifications allow candidates to learn, develop and practise the skills required for employment and/or career progression in Advanced Manufacturing Engineering.
	They also serve as Technical Certificates in the Advanced Manufacturing Engineering Level 4 apprenticeship framework.
What do the qualifications cover?	They allow candidates to learn, develop and practise the skills required for employment and/or career progression in the manufacturing sector.
Are the qualifications part of a framework or initiative?	These qualifications serve as technical certificates in the Level 4 Advanced Manufacturing Apprenticeship framework.
What opportunities for progression are	They allow candidates to progress into employment or to the following qualifications:
there?	ILM Level 4 or Level 5 Qualifications in Management
	 City & Guilds Professional Recognition Awards. Foundation Degree or other Higher Education qualifications
	These qualifications may also provide preparation towards professional registration as an Engineering Technician and progression to Incorporated Engineer registration.

Structure

To achieve the **Level 4 Diploma in Mechanical Manufacturing Engineering**, learners must achieve **70** credits from the mandatory units and a minimum of **50** credits from the optional units available.

Unit accreditation number	City & Guilds unit number	Unit title	Credit value
Mandatory			
D/504/4011	Unit 401	Quality assurance and control	15
K/504/4030	Unit 402	Human factors in the workplace	15
M/504/4014	Unit 403	Engineering planning and scheduling	15
F/504/4017	Unit 404	Statistical analysis for Engineers	10
R/504/4023	Unit 405	Principles of mechanical component manufacture	15

Optional B1 – Learners must take a minimum of 30 credits from this group

F/601/1626	Unit 406	Materials engineering	15
Y/504/4024	Unit 407	Automated machining of materials	10
D/504/4025	Unit 408	Introducing CAD/CAM systems in advanced manufacturing	10
H/504/4026	Unit 409	Engineering mathematics	15
K/504/4027	Unit 410	Industrial robotics	10
T/504/4029	Unit 411	Statistical process control	10
M/504/4031	Unit 412	Metal fabrication technology	15
L/504/4036	Unit 413	Welding technology and practice	10
F/504/4034	Unit 414	Quality assurance and testing of welded joints	10
Y/504/4041	Unit 415	Maintenance of engineering systems and equipment	15
J/601/1417	Unit 416	Instrumentation and control principles	15
R/504/9626	Unit 418	Engineering design	15

D/504/9631	Unit 445	Principles of composite materials	15
J/504/9638	Unit 446	Principles of composites manufacture	15

Optional B2 – Learners must take a minimum of 20 credits

F/601/1500	Unit 417	Engineering procurement	15
H/504/2910	Unit 420	Planning and implementing change within businesses	10
K/504/1449	Unit 421	Personal and professional development	10
T/504/1129	Unit 422	Project Management	15
F/602/1797	Unit 423	Managing information and knowledge	15
H/504/9713	Unit 450	Developing business improvement plans	10
H/504/4043	Unit 501	Work based project	20

To achieve the **Level 4 Diploma in Electrical and Electronic Engineering**, learners must achieve **70** credits from the mandatory units and a minimum of **50** credits from the optional units available.

Unit accreditation number	City & Guilds unit number	Unit title	Credit value
Mandatory			
D/504/4011	Unit 401	Quality assurance and control	15
K/504/4030	Unit 402	Human factors in the workplace	15
M/504/4014	Unit 403	Engineering planning and scheduling	15
F/504/4017	Unit 404	Statistical analysis for Engineers	10
K/504/4450	Unit 425	Principles of electrical and electronic engineering	15

Optional B1 – Learners must take a minimum of 30 credits from this group

H/504/4026	Unit 409	Engineering mathematics	15
Y/504/4041	Unit 415	Maintenance of engineering systems and equipment	15
J/601/1417	Unit 416	Instrumentation and control principles	15
R/504/9626	Unit 418	Engineering design	15
Y/504/4458	Unit 426	Data communication and networks	15
Y/504/4461	Unit 427	Understand uses and operation of electrical machines for engineering operations	10
D/504/4462	Unit 428	Using electrical protection techniques for engineering operations	10
R/504/4460	Unit 429	Electrical services and installation	10
T/504/4466	Unit 430	Electrical supply and distribution	10

M/504/4465	Unit 431	Testing and measurement of electronic and electrical systems	15
A/504/4467	Unit 432	Programmable logic controllers	10
A/504/4453	Unit 433	Designing analogue circuits	15
R/504/4457	Unit 434	Designing sequential and combinational logic circuits	10
L/505/5912	Unit 435	Microprocessor-based systems	10
D/504/9631	Unit 445	Principles of composite materials	15
J/504/9638	Unit 446	Principles of composites manufacture	15

Optional B2 – Learners must take a minimum of 20 credits

F/601/1500	Unit 417	Engineering procurement	15
H/504/2910	Unit 420	Planning and implementing change within businesses	10
K/504/1449	Unit 421	Personal and professional development	10
T/504/1129	Unit 422	Project Management	15
F/602/1797	Unit 423	Managing information and knowledge	15
H/504/9713	Unit 450	Developing business improvement plans	10
H/504/4043	Unit 501	Work based project	20

To achieve the **Level 4 Diploma in Aeronautical Engineering**, learners must achieve **60** credits from the mandatory units and a minimum of **60** credits from the optional units available.

Unit accreditation number Mandatory	City & Guilds unit number	Unit title	Credit value
D/504/4011	Unit 401	Quality assurance and control	15
K/504/4030	Unit 402	Human factors in the workplace	15
M/504/4014	Unit 403	Engineering planning and scheduling	15
D/504/9628	Unit 440	Fundamentals of airworthiness management	15

Optional B1 – Learners must take a minimum of 10 credits from this group

F/504/4017	Unit 404	Statistical analysis for Engineers	10
D/504/4025	Unit 408	Introducing CAD/CAM systems in advanced manufacturing	10
H/504/4026	Unit 409	Engineering mathematics	15
R/504/9626	Unit 418	Engineering design	15
K/504/4450	Unit 425	Principles of electrical and electronic engineering	15
F/601/1450	Unit 502	Mechanical principles	15

Optional B2 – Learners must take a minimum of 30 credits from this group

0.000			
Y/504/9630	Unit 441	Integrated aircraft systems	10
A/504/9765	Unit 442	Fault finding diagnosis	10
F/504/9766	Unit 443	Communication and navigation systems	15
J/504/9767	Unit 444	Efficient maintenance in aircraft operations	5
D/504/9631	Unit 445	Principles of composite materials	15

Optional B3 – Learners must take a minimum of 20 credits from this group

F/601/1500	Unit 417	Engineering procurement	15
H/504/2910	Unit 420	Planning and implementing change within businesses	10
K/504/1449	Unit 421	Personal and professional development	10
T/504/1129	Unit 422	Project Management	15
F/602/1797	Unit 423	Managing information and knowledge	15
H/504/9713	Unit 450	Developing business improvement plans	10
H/504/4043	Unit 501	Work based project	20

2 Centre requirements

Approval

There is no fast track approval for this qualification; existing centres who wish to offer this qualification must use the **standard** Qualification Approval Process.

To offer this qualification, new centres will need to gain both centre and qualification approval. Please refer to the *Centre Manual - Supporting Customer Excellence* for further information.

Centre staff should familiarise themselves with the structure, content and assessment requirements of the qualification before designing a course programme.

Centre staffing

It is important that centre staff involved in the delivery or internal quality assurance of this qualification have the appropriate knowledge and skills to ensure its effective delivery.

Staff delivering this qualification must be able to demonstrate that they meet the following occupational expertise requirements. They should:

- be occupationally competent or technically knowledgeable in the areas for which they are delivering training and/or have experience of providing training. This knowledge must be to the same level as the training being delivered
- have recent relevant experience in the specific area they will be assessing, including setting and marking assignments
- have credible experience of providing training.

Centre staff may undertake more than one role, eg tutor and assessor or internal quality assurer, but cannot internally quality assure their own assessments.

Assessors and internal quality assurers

Assessor/Verifier (A/V) units are valued as qualifications for centre staff, but they are not currently a requirement for the qualification. However, it is strongly recommended that Assessors and Internal Quality Assurers hold these qualifications or equivalent if they are going to be involved in writing and approving centre set and marked assignments.

Continuing professional development (CPD)

Centres must support their staff to ensure that they have current knowledge of the occupational area, that delivery, mentoring, training, assessment and quality assurance is in line with best practice, and that it takes account of any national or legislative developments.

Candidate entry requirements

City & Guilds does not set entry requirements for this qualification. However, centres must ensure that candidates have the potential and opportunity to gain the qualification successfully.

Age restrictions

City & Guilds cannot accept any registrations for candidates under 19 as this qualification is not approved for under 19s.

3 Delivering the qualification

Initial assessment and induction

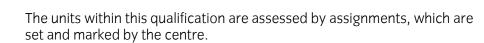
An initial assessment of each candidate should be made before the start of their programme to identify:

- if the candidate has any specific training needs
- support and guidance they may need when working towards their qualification
- any units they have already completed, or credit they have accumulated which is relevant to the qualification.

We recommend that centres provide an induction programme so the candidate fully understands the requirements of the qualification, their responsibilities as a candidate, and the responsibilities of the centre. This information can be recorded on a learning contract.

Support materials

The following resources are available for this qualification:


Description	How to access
Assessment pack	Available on the qualification pages on the City & Guilds Website
Exemplar assignments	Available on the qualification pages on the City & Guilds Website
Developing centre devised assessments (guidance for centre based assessment writers GM1)	Available on the qualification pages on the City & Guilds Website
Centre devised recording forms	Available on the qualification pages on the City & Guilds Website
	on the City & Guilds Website

Recording documents

City & Guilds has developed a set of Centre Devised Recording forms, for new and existing centres to use as appropriate when developing centre set and marked assignments.

Although new centres are expected to use these forms, centres may devise or customise alternative forms, which must be approved for use by the Qualifications Consultant, before they are used by candidates and assessors at the centre. Amendable (MS Word) versions of the forms are available on the City & Guilds website. 4

Assessment

Detailed assessment guidance for all units is provided in a separate Assessment Pack. Exemplar assignments are also provided for the mandatory units and a sample of optional units which centres may use as is or tailor to suit local circumstances. Assessment materials are available to download from the qualification pages on the City & Guilds website **www.cityandguilds.com**

Centre set assignments must be approved by the Qualifications Consultant (QC) before use. For each assignment, the *Assignment Sign Off Sheet* (AD3) must be completed and be made available to the QC for inspection. For further guidance on the approval process for centre set assignments and guidance on how to produce, please refer to the document, 'Developing centre devised assessments – guidance for centre based assessment writers (GM1)', which is available to download from the qualification page on the City & Guilds website. Recording forms and generic marking and grading criteria are also provided on these pages.

Unit	Title	Assessment method	Where to obtain assessment materials
401	Quality assurance and control	Centre devised assignment.	City & Guilds Website
402	Human factors in the workplace	Centre devised assignment.	City & Guilds Website
403	Engineering planning and scheduling	Centre devised assignment.	City & Guilds Website
404	Statistical analysis for Engineers	Assignment.	City & Guilds Website
405	Principles of mechanical component manufacture	Centre devised assignment.	City & Guilds Website
406	Materials engineering	Centre devised assignment.	City & Guilds Website
407	Automated machining of materials	Centre devised assignment.	City & Guilds Website

Unit	Title	Assessment method	Where to obtain assessment materials
408	Introducing CAD/CAM systems in Advanced Manufacturing	Centre devised assignment.	City & Guilds Website
409	Engineering mathematics	Assignment.	City & Guilds Website
410	Industrial robotics	Centre devised assignment.	City & Guilds Website
411	Statistical process control	Centre devised assignment.	City & Guilds Website
412	Metal fabrication technology	Centre devised assignment.	City & Guilds Website
413	Welding technology and practice	Centre devised assignment.	City & Guilds Website
414	Quality assurance and testing of welded joints	Centre devised assignment.	City & Guilds Website
415	Maintenance of engineering systems and equipment	Centre devised assignment.	City & Guilds Website
416	Instrumentation and control principles	Centre devised assignment.	City & Guilds Website
417	Engineering procurement	Centre devised assignment.	City & Guilds Website
418	Engineering design	Centre devised assignment.	City & Guilds Website
420	Planning and implementing change within businesses	Centre devised assignment.	City & Guilds Website
421	Personal and professional development	Centre devised assignment.	City & Guilds Website
422	Project Management	Centre devised assignment.	City & Guilds Website
423	Managing information and knowledge	Centre devised assignment.	City & Guilds Website
425	Principles of electrical and electronic engineering	Assignment.	City & Guilds Website

Unit	Title	Assessment method	Where to obtain assessment materials
426	Data communication and networks	Centre devised assignment.	City & Guilds Website
427	Understand uses and operation of electrical machines in engineering operations	Centre devised assignment.	City & Guilds Website
428	Using electrical protection techniques for engineering operations	Centre devised assignment.	City & Guilds Website
429	Electrical services and installation	Centre devised assignment.	City & Guilds Website
430	Electrical supply and distribution	Centre devised assignment.	City & Guilds Website
431	Testing and measurement of electronic and electrical systems	Centre devised assignment.	City & Guilds Website
432	Programmable logic controllers	Centre devised assignment.	City & Guilds Website
433	Designing analogue circuits	Centre devised assignment.	City & Guilds Website
434	Designing sequential and combinational logic circuits	Centre devised assignment.	City & Guilds Website
435	Microprocessor based systems	Centre devised assignment.	City & Guilds Website
440	Fundamentals of airworthiness management	Centre devised assignment.	City & Guilds Website
441	Integrated aircraft systems	Centre devised assignment.	City & Guilds Website
442	Fault finding diagnosis	Centre devised assignment.	City & Guilds Website
443	Communication and navigation systems	Centre devised assignment.	City & Guilds Website

Unit	Title	Assessment method	Where to obtain assessment materials
444	Efficient maintenance in aircraft operations	Centre devised assignment.	City & Guilds Website
445	Principles of composite materials	Centre devised assignment.	City & Guilds Website
446	Principles of composites manufacture	Centre devised assignment.	City & Guilds Website
450	Developing business improvement plans	Centre devised assignment.	City & Guilds Website
501	Work based project	Centre devised assignment.	City & Guilds Website

Time constraints

Centre staff should guide candidates to ensure excessive evidence gathering is avoided. Centres finding that assignments are taking longer, should contact their Qualifications Consultant for guidance.

All assignments must be completed and assessed within the candidate's period of registration. Centres should advise candidates of any internal timescales for the completion and marking of individual assignments.

Recognition of prior learning (RPL)

Recognition of prior learning means using a person's previous experience or qualifications which have already been achieved to contribute to a new qualification.

Centre set and marked assessments

City & Guilds has provided separate guidance for writers of centre based assessments which should be read in conjunction with this document, entitled, **'GM1 - Developing centre devised assessments** – guidance for centre based assessment writers'.

A set of generic recording forms is also provided as follows:

- Assessment tasks (AD1)
- Assessment grading criteria (AD2)
- Assessment sign off form (AD3)
- Evidence recording form (GF1)
- Assessment unit front and mark sheet (GF2)
- Assessment task front sheet (GF3)
- Assessment unit mark sheet (GF4)
- Assessment feedback and action plan form (GF5)
- Qualification assessment tracking form (GF6)

• Group assessment tracking form (GF7)

A full explanation of the use of these forms can be found in the centre devised assessment writing guidance. All of this material is available to download from the City & Guilds website.

Availability of units

The following units can also be obtained from the Register of Regulated qualifications: **www.register.ofqual.gov.uk**

Structure of units

These units each have the following:

- City & Guilds reference number
- unit accreditation number (UAN)
- title
- level
- credit value
- guided learning hours
- unit aim
- learning outcomes which are comprised of a number of assessment criteria.

UAN:	D/504/4011
Level:	4
Credit value:	15
GLH:	42
Aim:	The purpose of this unit is to enable learners to develop the skills and knowledge required to assess and evaluate quality management systems in a manufacturing environment.

Learning outcome

The learner will:

1. Understand the importance of quality assurance and quality control within an organisational culture

Assessment criteria

The learner can:

- 1.1 Explain the importance of creating an appropriate organisational culture
- 1.2 Evaluate the **attributes** of successful organisational management
- 1.3 Evaluate **opportunities to improve or develop** an organisational culture

Range

Attributes

Leadership; people management and motivation; process capability; communication; customer focus

Opportunities to improve or develop

Within appropriate area of responsibility; strategic aims of the business; SWOT and PESTLE analysis

Learning outcome

The learner will:

2. Understand how Total Quality Management systems operate

Assessment criteria

The learner can:

- 2.1 Explain the principles of Total Quality Management
- 2.2 Evaluate organisational management structures
- 2.3 Evaluate quality policies of organisations

Range

Principles

Total company commitment to quality; zero errors or zero defects; mind set; internal and external customers; organisations focus on the customers to meet their needs by standardisation of procedures / policies; use of innovation through quality improvement techniques / methodology including quality circles, Kaizen; supply to customers should try to exceed their expectations; continuous improvement policy

Learning outcome

The learner will:

3. Understand the implementation process of quality management systems

Assessment criteria

The learner can:

- 3.1 Describe quality management systems
- 3.2 Identify **key factors** that must be implemented for quality management systems to be successful
- 3.3 Evaluate internal and external quality audits

Range

Quality management systems

Quality Assurance; Quality Control

Key factors

Goals of an organisation; mission statement; focus on quality; control of quality achieved through inspection, checking, measurement and testing; teamwork

Audits

Costs of production (fixed, variable, break even); waste; internal failures; external failures; appraisal; prevention costs

Learning outcome

The learner will:

4. Understand key principles of Business Excellence Models

Assessment criteria

The learner can:

- 4.1 Explain the nature and concepts of Business Excellence Models
- 4.2 Analyse essential components and **interrelationships of**

Business Excellence Models

Range

Interrelationships of BEMs

Leadership; strategic planning; added value for customers; knowledge management; team/partnership building; sustainability; soft and hard metrics; fostering innovation and inventiveness.

Learning outcome

The learner will:

5. Understand the principles of Six Sigma project management

Assessment criteria

The learner can:

- 5.1 Explain the **key factors** of six sigma methodology
- 5.2 Evaluate the application of six sigma project management

Range

Key factors

Commitment of senior management; communication within organisation; involvement of the whole organisation; management of Six Sigma philosophy as a project; education and training of the workforce; identification of 'champions'

Learning outcome

The learner will:

6. Understand the techniques and methods applied to the quality control of goods and services

Assessment criteria

The learner can:

- 6.1 Explain the application of **techniques and methods** used in supply quality control
- 6.2 Explain how quality control metrics are used to rate suppliers

Range

Techniques and methods

Use of key performance indicators and the balanced scorecard; use of 'soft' metrics such as punctuality, customer satisfaction; use of 'hard' metrics such as mass, weight, length; sampling plans

Learning outcome

The learner will:

7. Understand the use and application of codes of practice, standards and design guides

Assessment criteria

The learner can:

- 7.1 Describe relevant codes of practice, standards and design guides
- 7.2 Evaluate the application of codes of practice, standards and design guides

Range

Codes of practice, standards and design guides

Local, national and international (eg ISO 9000).

Unit 402 Human factors in the workplace

UAN:	K/504/4030
Level:	4
Credit value:	15
GLH:	60
Aim:	The purpose of this unit is to enable learners to develop an understanding of the principles of human factors in manufacturing environments. Learners will look at the importance and impact of human factors on performance in the workplace, gain an appreciation for workplace company culture, recognise effective methods of communication, know principles of leadership and management, and will be able to carry out risk assessments.

Learning outcome		
The learner will:		
1. Understand the importance of human factors in the workplace		
Assessment criteria		
The learner can:		
1.1	Assess the impact of human factors on human performance	
1.2	Describe categories of human factors important to staff	

Range

Impact

Murphy's law; safety of employees; assets; long-term health of employees; efficiency of organisation

Categories

Working environment; work patterns; social habits; work load; communication; employee health

Learning outcome

The learner will:

2. Understand features and limitations of human performance

Assessment criteria

The learner can:

- 2.1 Explain how low and very high **light levels affect** visual performance
- 2.2 Explain how **levels of noise affect** human performance
- 2.3 Explain **factors** that affect limitations of the human memory
- 2.4 Assess how working in **challenging environments** increases risks occurrence

Range

Light levels

Reflective index; strobe effect; peripheral vision; image flicker; colour rendering

Effect on visual performance

Fatigue; visual inspection; residual image; long term sight damage

Levels of noise

Prolonged; intermittent; percussive

Effects on human performance

Communication errors; fatigue

Factors

Attention span; time from exposure to information; fatigue; age; complexity of information; artificial stimulants; depressants; overconfidence; boredom

Challenging environments

Claustrophobia; fear of heights; limited access; confined space; low concentration; time constraints; cutting corners; poor vision; environmental extremes; peer pressure

Learning outcome

The learner will:

3. Understand the interrelationship between different roles and responsibilities in the workplace

Assessment criteria

The learner can:

- 3.1 Explain the principles of workplace **company culture**
- 3.2 Explain areas of **individual and group responsibility** in the workplace
- 3.3 Evaluate the **relationship** between managers, supervisors and operatives
- 3.4 Explain the principles and characteristics of leadership

Range

Company culture

Different types of culture (shift, teams, social); safety culture; individuals; compromise

Individual and group responsibility

Roles and responsibilities and the interaction between; groups and teams; individuals; inter group dynamics; shift handovers

Relationship

Differentiate between management and supervisor roles; expectations; organisations

Learning outcome

The learner will:

4. Understand how physical and personal factors of the working environment affect human performance

Assessment criteria

The learner can:

- 4.1 Analyse **sources** of stress
- 4.2 Explain the effects of setting **deadlines** on work performance
- 4.3 Analyse the effects of **external environmental factors** on individual performance

Range

Sources

Domestic; work; acute; chronic

Deadlines

Realistic (improve performance; minimal errors; motivated workforce; improved time management skills; efficiency of resources; staff retention) *Unrealistic*(poor quality of work; increased amount of errors/accidents; decrease in morale; staff turnover)

External environmental factors

Noise; fumes; illumination; climate; motion; working environment

Learning outcome

The learner will:

5. Understand how the execution of different tasks can affect human performance

Assessment criteria

The learner can:

- 5.1 Explain the importance of **planning and executing** tasks
- 5.2 Explain how **demanding work** can affect human performance
- 5.3 Analyse the **aspects** of working on complex systems

Range

Planning and executing tasks

Define the tasks; resources; personal skills and proficiency information; planning of repetitive tasks (complacency; assumption of time)

Impact of demanding work

Health and physical condition; effects of lack of physical fitness against the work standard for the occupation; work environment; physical effort; effects of ageing; visual inspection (importance of good eyesight, knowledge of inspection, illumination, concentration, systematic search)

Aspects

Simple system transparent; complex system opaque; clear understanding of the purpose of the system; pooling of knowledge and skills; comprehensive information and guidance; associated hazards

Learning outcome

The learner will:

6. Understand how to communicate effectively in the workplace

Assessment criteria

The learner can:

- 6.1 Explain the importance of **interpersonal and communication skills** in optimising performance
- 6.2 Evaluate the **effectiveness of feedback** when developing communication skills
- 6.3 Assess **methods of communication** appropriate to different audiences

Range

Interpersonal and communication skills

Writing; verbal; visual; outcomes; key points; intonations; accuracy; urgent; level of importance; adaptation; audience; barriers; achieved purpose; audience; formality; situations

Effectiveness of feedback

Analysis of formal and informal feedback; reflection

Methods of communication

Written; verbal; visual; format; layout; presentation; objectives; discussion; adaptation

Learning outcome

The learner will:

7. Understand causes of human error

Assessment criteria

The learner can:

- 7.1 Explain causes of error that occur during work
- 7.2 Evaluate **methods** of managing and avoiding errors

Range

Causes of error

Complacency; overconfident; lack of knowledge; poor training; lack of information; lack of interest; inattention; distractions; environmental; violations; communication

Methods of managing and avoiding errors

Self-discipline; safety management system; anonymous and blamefree reporting; review of error logs; formal briefing; coaching; mentoring; training (new and refresher)

Learning outcome

The learner will:

8. Be able to recommend ways to mitigate risk in the workplace

Assessment criteria

The learner can:

- 8.1 Explain the **five steps** to risk assessment
- 8.2 Evaluate the risks for workplace hazards
- 8.3 Propose solutions to minimise risk in the workplace

Range

Five steps

Identify hazards; evaluate; record findings; review and update

Learning outcome

The learner will:

9. Understand how to apply safety, occupational health and environmental policies within industry

Assessment criteria

The learner can:

- 9.1 Analyse **personal legal obligations** of individuals within industry
- 9.2 Evaluate the **impact and implications** of legislation concerning health and safety in the workplace
- 9.3 Evaluate **environmental policies** within industry

Range

Personal legal obligations

Alcohol; drugs; legislation; health and safety

Impact and implications of legislation

Current local; national; international legislation monitored; regulated; controlled

Environmental policy

Material inputs and outputs; waste energy; process efficiency; ISO 14001

Unit 403 Engineering planning and scheduling

4
15
66
The purpose of this unit is to enable learners to develop an understanding of how maintenance/manufactured products and their associated processes are planned, monitored and controlled. Learners will extend their knowledge to apply both manual and computer-assisted methods and procedures.
The unit covers process plans (eg forecasting, network analysis), capacity assessment and scheduling and maintenance strategies. This leads the learner into inventory management with stock control and documentation systems. The last two outcomes require the learner to examine group technology, process plans and production/maintenance scheduling.

Learning outcome

The learner will:

1. Understand the use of process planning, capacity assessment and scheduling techniques

Assessment criteria

The learner can:

- 1.1 Assess the uses of different **process planning techniques**
- 1.2 Evaluate the use of **capacity assessment techniques** for different types of engineering process
- 1.3 Evaluate the use of a range of **scheduling techniques**

Range

Process planning techniques

Forecasting; network analysis; critical path method (CPM); project evaluation and review technique (PERT); failure mode and effects analysis (FMEA); material requirement planning (MRP); equipment and tooling; make or buy decisions; computer aided-planning and estimating.

Capacity assessment techniques

Bill of materials; economic batch size; assessment of load and capacity; effects of re-working and scrap; methods of increasing/decreasing capacity; time phased capacity planning.

Scheduling techniques

Lead times; critical path analysis (CPA); supplier and production schedules; Kanban; optimised production technology (OPT) philosophy; influence of scheduling on capacity planning dispatching; material requirement planning (MRP).

Learning outcome

The learner will:

2. Understand inventory management documentation

Assessment criteria

The learner can:

- 2.1 Explain the **principles** of inventory management
- 2.2 Assess workplace documentation **systems**

Range

Principles

Types of inventory; dependent and independent demand; role of buffer stock; cost of inventory

Systems

Works orders; routing document; job tickets; recording of finished quantities; re-work and scrap; stock records.

Learning outcome

The learner will:

3. Understand the use of shop control systems

Assessment criteria

The learner can:

- 3.1 Explain the **uses of shop control**
- 3.2 Evaluate different stock control systems

Range

Uses of shop control

Scheduled release of works orders; progressing; data collection and feedback

Stock control systems

Periodic review; re-order points; two bin system; basic economic order quantities; just in time; Kanban

Learning outcome

The learner will:

4. Understand group technology processing

Assessment criteria

The learner can:

- 4.1 Explain **methods** of classifying and coding component parts into family groups
- 4.2 Explain how family groups of components are **sequenced** for processing through grouped facilities

Range

Methods

Sequential; product; production; design; Opitz method; classification of parts into families

Sequence

Layout; product; process; fixed position; group; sequencing of families for groups of facilities

Learning outcome

The learner will:

5. Be able to plan engineering activities

Assessment criteria

The learner can:

- 5.1 Produce process plans from given data
- 5.2 Produce **schedules** from process plans

Range

Process plans

Forecast to identify timings and completion dates; materials required; equipment and tooling required; methods or processes employed; labour requirements and planning for quality checks; proposal for data logging; use of computers; MRP

Schedule

Developed from the process planning and customer requirements; lead times; using scheduling techniques such as CPA, Gantt charts, software packages (CMMS, CPS, CAM, CAPP, CIM), OPT philosophy, MRP

Unit 404 Statistical analysis for Engineers

UAN:	F/504/4017
Level:	4
Credit value:	10
GLH:	45
Aim:	The purpose of this unit is to enable learners to develop an understanding of statistical concepts and operations used in analysis. Learners will understand the need to collect valid and appropriate sample data from a process to support the statistical analysis of process performance or of problems with that process. Learners will acquire skills and knowledge of statistical analysis techniques and will be able to apply them to the study of engineering products and processes. Learners will be able to provide unbiased conclusions and recommendations arising from the analysis undertaken.

Learning outcome		
The learner will:		
1. Understand the causes of variation in industrial processes		
Assessment criteria		
The learner can:		
1.1	Explain sources of variation due to assignable causes in industrial processes	
1.2	Explain the importance of identifying and removing assignable causes	
1.3	Explain the nature of random variation in industrial processes	

Range

Assignable causes

Human factors; mistakes in computation and measurement; disinterest and/or carelessness; systematic error sources (faulty equipment calibration or observer bias)

Nature of random variation

Occur after systematic errors have been accounted for; result from range of uncontrollable effects; ambient conditions; temperature; humidity instrument uncertainties

Learning outcome

The learner will:

2. Understand statistical concepts and functions

Assessment criteria

The learner can:

- 2.1 Explain the **relationship** between sample data and the total data population
- 2.2 Identify different distributions used for sample statistics
- 2.3 Explain the importance of the normal **probability distribution** for sample statistics

Range

Relationship

- Terminology (observational data, variables, attributes, population, sample)
- Probability (sets, events, definitions, conditional probability, Bayes theorem)
- Random variables (discrete, continuous)

Different distributions

Probability distributions (histograms, continuous density, discrete and cumulative functions); *Theoretical distributions* (uniform, exponential, Normal, Weibull, Bernoulli, binomial, Poisson)

Learning outcome

The learner will:

3. Be able to calculate unbiased estimates of population parameters

Assessment criteria

The learner can:

- 3.1 Explain common statistical techniques for summarising data
- 3.2 Use **statistical techniques** to calculate unbiased estimates of population parameters using sample data

Range

Summarising data

Mean; variance; standard deviation; proportion

Statistical techniques

Sampling statistics (central limit theorem, standard error of the mean and its distribution);sampling distributions (Normal, Chi-square, Student t, F-distributions); sampling intervals (confidence intervals for mean and difference of two means when variance is or is not known)

Learning outcome

The learner will:

4. Be able to solve industrial problems using statistical analysis of sample data

Assessment criteria

The learner can:

- 4.1 Test proposed **statistical hypotheses** about given populations
- 4.2 Use **tests** to identify population distributions
- 4.3 Conduct one-way analyses of variance (ANOVA)
- 4.4 Produce **quality control** charts for monitoring production
- 4.5 Evaluate the **reliability** of manufactured engineering products

Range

Statistical hypotheses

Null and alternative hypotheses (type 1 and 2 errors, level of significance, operating characteristic curves); tests for means (one sample and two sample t-tests with known or unknown variance, paired t-tests)

Tests to identify population distributions

Goodness of fit test; chi-square test

Analysis of variance

Assumptions; single factor (one-way) tests; fixed effects model; random effects model

Quality control

Process in statistical control; effects of assignable causes; sample selection; control charts for continuous variables and attributes; upper and lower control limits; warning limits; \bar{x} and R charts; interpretation and use of control charts

Reliability

Failure rate function (hazard function); reliability modelling and estimation; exponential failure law; mean time to failure; use of Weibull plots; reliability of systems comprising components in serial and parallel combinations with active or standby redundancy

Unit 405 Principles of mechanical component manufacture

UAN:	R/504/4023
Level:	4
Credit value:	15
GLH:	52
Aim:	The purpose of this unit is to enable learners to develop an understanding of a wide range of manufacturing methods for metallic and non-metallic mechanical components and will be able to analyse the manufacturing requirements of mechanical components, compare and select from different manufacturing methods, determine suitable finishing processes for varying component specifications, and identify the requirements for, and methods of, component inspection.

Learning outcome

The learner will:

1. Understand the modern manufacturing environment

Assessment criteria

The learner can:

- 1.1 Explain **factors** that have influenced the development of modern manufacturing systems
- 1.2 Evaluate the different ways of organising the **manufacturing process for discrete mechanical products**

Range

Factors

Increased product diversity; greatly reduced product life cycles; changing balance of costs for materials; labour and overheads; availability of increasing range of manufacturing technologies; demands for flexibility of manufacturing systems.

Process organisation for discrete manufacturing

Job shop production; batch production; mass production; characteristics of process organisation (production volumes, required labour skills, specialised/customised equipment and tooling)

The learner will:

2. Understand manufacturing requirements of mechanical engineering products

Assessment criteria

The learner can:

- 2.1 Describe **sources of data used** to **interpret** the specification details for mechanical engineering products
- 2.2 Evaluate the **manufacturing requirements** for products

Range

Sources of data

Product representation in a CAD system; graphical; drawing; geometric and product model data

Interpretation of data using:

Engineering drawings; bill of materials; reference sources of information on materials; dimensional standards (wire and sheet metal gauges, screw threads, bolt and nut sizes, tubes and fitting sizes); technical safety standards; quality standards (Industry/National specific).

Manufacturing requirements

Parts required; materials; overall dimensions; accuracy requirements; types of surface finish required and other treatments; need for special jigs and/or fixtures; quantities to be manufactured; manufacturing methods available; manufacturing lead times; decisions to make or buy particular parts; estimate of the cost of manufacture

Learning outcome

The learner will:

3. Understand methods of mechanical engineering manufacture

Assessment criteria

The learner can:

- 3.1 Describe manufacturing **processing methods** for metal and plastic parts
- 3.2 Evaluate **methods of casting** mechanical components
- 3.3 Evaluate **methods of forming** mechanical components
- 3.4 Assess **latest developments** of mechanical engineering manufacture
- 3.5 Evaluate methods of moulding plastic components
- 3.6 Evaluate machining processes for mechanical components
- 3.7 Evaluate **specialty machining processes** available for mechanical component manufacture
- 3.8 Evaluate **methods for joining** mechanical components

Range

Processing methods

Casting; extrusion; forming; moulding; cutting and joining

Methods of casting

Die casting (both low and high pressure); investment casting (lost wax process); centrifugal casting; sand casting (sand bonded with chemicals or clay and water or oil); shell casting; spin casting

Methods of forming

Cold sizing; extrusion; drawing (including deep drawing); forging; hydroforming; roll forming; powder metallurgy.

Latest developments

Rapid prototyping; 3-D printing

Methods of moulding polymers

Polymerisation; thermoplastic and thermosetting polymers; injection moulding; extrusion moulding; compression moulding; roto-moulding.

Machining processes

Turning; milling; drilling; grinding; broaching; use of cutting fluid or coolant

Specialty machining processes

Ultrasonic machining; high pressure water jet cutting; abrasive water jet cutting and abrasive jet machining

Methods for joining

Welding (oxy-fuel, MIG, TIG); brazing; soldering and adhesive bonding

Learning outcome

The learner will:

4. Understand finishing treatments for manufactured parts

Assessment criteria

The learner can:

- 4.1 Explain how **heat treatment processes** improve mechanical performance
- 4.2 Evaluate **processes** required to produce smooth regular surfaces
- 4.3 Explain **surface treatment processes** used to improve resistance to wear
- 4.4 Explain **surface treatment processes** used to improve resistance to corrosion

Range

Heat treatment processes

Annealing; precipitation strengthening; quenching; tempering

Processes

Grinding; lapping; honing; super finishing

Surface treatment processes to improve resistance to wear

Nitriding; case hardening; hard chrome finish

Surface treatment processes to improve resistance to corrosion

Galvanising; anodising; tin plating; sheradising; electroplating

Learning outcome

The learner will:

5. Understand the requirements for product inspection

Assessment criteria

The learner can:

- 5.1 Outline the purpose of inspecting mechanical products
- 5.2 Evaluate methods available for inspecting mechanical products

Range

Methods

Select suitable inspection equipment and methods (manual or computer-controlled measuring systems); determine the need for any special test or inspection equipment (gauges, test rigs); ensure that all inspection equipment has been properly calibrated; establish conditions and procedures for either re-working or rejecting products that do not meet the design specification.

Unit 406 Materials Engineering

4
15
60
The purpose of this unit is to enable learners to develop an understanding of the properties, selection criteria, relationships between processes and behaviour, and causes of failure of engineering materials.

Lea	rning outcome
The	learner will:
	Be able to determine the properties and selection criteria of materials from tests and data sources
Ass	essment criteria
The	learner can:
1.1	Detail the appropriate properties and criteria for the selection of a metallic, ceramic, polymer and composite material
1.2	Explain the particular characteristics related to the microstructure and macroscopic behaviour of the four categories of engineering materials
1.3	Generate and process test data to assess material properties for two categories of material
1.4	Investigate and assess the quality of suitable data from three different sources

Range

Criteria for selection

Characteristics; costs

Categories of engineering materials

Metals; ceramics; polymers; composites

Test data

Electrical conductivity/resistivity; magnetic susceptibility; mechanical strength; hardness; toughness; fatigue and creep resistance; corrosion and reactivity; wear resistance; optical and thermal properties; formability; appropriate statistical methods; processing of test data

Sources

British Standards; ISO; product data sheets; IT sources; manufacturers' literature; job-specific information (specifications, test data and engineering drawings)

Learning outcome

The learner will:

2. Understand the relationships between manufacturing processes and material behaviour

Assessment criteria

The learner can:

- 2.1 Explain how one heat **treatment process** and two other treatment processes effect the structure properties and behaviour of the parent material
- 2.2 Explain how one **liquid processing** method and two **mechanical processing** methods affect the structure, properties and behaviour of the parent material
- 2.3 Investigate how the **composition and structure** of metal alloys, polymers and polymer matrix composites, influences the properties of the parent material

Range

Treatment processes

Heat treatments (quench and precipitation hardening processes); complex heat treatments (conjoint mechanical/thermal treatments, glass transitions); other treatment processes (coated materials; chip technology; surface treatments/surface engineering; polymer treatments; composites/powder produced materials; matrix / reinforcement relationships; dispersion strengthening)

Liquid processing

Metal casting and injection moulding/extrusion of polymers

Mechanical processing

Mechanical working of metals; powder processing of metals and ceramics; extrusion and forming of polymer sheet; welding; use of adhesives

Composition and structure

Alloying; co-polymerisation; additives; cross-linking; crystallinity; lattice structure; slip planes

Learning outcome

The learner will:

3. Be able to select suitable materials and processing methods for a specific product

Assessment criteria

The learner can:

3.1 Analyse the function/s of a product in terms of the materials' **constraints** on its **design**

- 3.2 Identify the required **properties** for the product and select the most appropriate materials and processing methods
- 3.3 Identify and explain the possible **limitations** on the product imposed by the processing and by the need to safeguard the environment and minimise costs

Range

Design constraints

Working conditions; environment; electrical/magnetic requirements; shape; form and function of the product

Properties

Merit index/index of suitability; ability to be recycled

Processing limitations

Effects of the manufacturing processing capabilities on the structure of materials; preventing or facilitating product design; effect on environment (sustainability, emissions, energy conservation, disposal)

Learning outcome

The learner will:

4. Understand the in-service causes of failure of engineering materials

Assessment criteria

The learner can:

- 4.1 Explain the common **causes of in-service failure** for products or structures produced from each or a combination of the four categories of engineering materials
- 4.2 For one product or material structure, identify and explain the inservice conditions that may contribute to **early failure**
- 4.3 Explain the **methods** for investigating materials failure and for estimating product service life, when a product is subject to creep and fatigue loading
- 4.4 Determine and make recommendations for remedial/preventive measures for a given product or materials structure, that will help **improve** its **service life**

Range

Causes of in-service failure

Creep; fatigue; impact; overstressing; corrosion; temperature; thermal cycling; residual stresses; stress relaxation; degradation (composition change); radiation; electrical; breakdown

Methods

Simulation; experimentation; research data

Early failure

Inappropriate maintenance; inappropriate use; faults in manufacture; material selection and design faults; changes in service conditions such as environment; loading and temperature

Improving service life

Changes to material; product design; protective systems for corrosion and degradation; adjustment loading and working temperature; preventative maintenance

Unit 407 Automated machining of materials

UAN:	Y/504/4024
Level:	4
Credit value:	10
GLH:	40
Aim:	The purpose of this unit is to enable learners to develop an understanding of modern machining systems, the importance of information links between CAD product data and manufacturing data, the role of process planning in manufacturing and the types of process planning available.
	On successful completion of this unit, learners will be able to prepare part- programs for a CNC machine, set up a CNC machine to safely machine a part, test and prove a new part-program and, if necessary, edit the program, and produce the part on a CNC machine.
Learning outcome	

 Learning outcome

 The learner will:

 1. Understand the use of automation in modern machining systems

 Assessment criteria

 The learner can:

 1.1 Explain the development of modern machining systems from stand-alone machines to flexible manufacturing systems

 1.2 Evaluate the principal features of flexible manufacturing systems

Range

Development of modern machining systems

The influence of customer demands for quality and variability of products on manufacturing requirements; types of manufacturing facility (NC/CNC stand-alone machine; machining centre; manufacturing cell; flexible manufacturing system (FMS); batch flow line; transfer line; flexibility; productivity and quality control in the different types of facility)

Principal features

Flow line production principle; unique identification of parts and tools; automation of material transportation and handling; limitation on

number of manufacturing tools through standardisation of pallets; fixtures and cutting tools; clear division of work between machine stations; automatic testing/inspection after each manufacturing process. Flexibility is achieved through being able to accommodate short product life cycles, fast response to changing markets and efficient manufacture of small batch sizes

Learning outcome

The learner will:

2. Understand the information links between CAD and manufacturing systems

Assessment criteria

The learner can:

2.1 Explain the **relationships** between CAD product data and manufacturing data

Range

Relationship

The importance of having a single source of product data; representation in a CAD system of products to be manufactured; the product database; (graphical data, drawing data, geometric data, product model data), product design and analysis; 3-D product models; rapid prototyping of components; engineering part drawings; bill of materials

Learning outcome

The learner will:

3. Understand process planning for manufacture

Assessment criteria

The learner can:

- 3.1 Explain the **role of process planning** in part manufacture
- 3.2 Evaluate the different **types** of manufacturing process planning

Range

Process planning

Aims to produce finished parts that meet the product design requirements in terms of functionality, surface finish, quality, tolerances, hardness, life expectancy and processing costs. Planning requires selection of part material; processing machine(s); routing between machines; machining operations and their sequencing; selection of cutting tools; determining setup requirements; calculation of cutting parameters; tool path planning; generation of CNC part programs; design of jigs/fixtures

Types

Experienced; manual planners or by computer-aided process planning (CAPP) software

The learner will:

4. Know how to produce CNC part-programs

Assessment criteria

The learner can:

- 4.1 Describe **program terminology** used to produce CNC partprograms
- 4.2 Explain the **preparation** and **content** of typical CNC partprograms
- 4.3 Explain the **issues** that need to be addressed when creating CNC part-programs

Range

Program terminology

Character; word; block; modal and non-modal functions; types of program format; fixed sequence/block; word address; storage and retrieval of prepared programs; canned cycles; program loops; macros and subroutines

Preparation

Processed by a computer to produce machine-independent cutter location data; then by a post-processor that adapts this data for the particular machine controller to be used.

Content

Sequence of instructions for machining a part that contains header data; geometric and technical definitions; operation execution instructions and a program end statement

Issues

Assembly of part-program data (identification of datum position, geometric and technical data from engineering part drawings); programming codes (G and M codes, sequence of operations, cutting tool specifications, spindle speeds and feed rates, coolant control, cutter diameter compensation, tool length offset values, canned cycles); program specification (choice of safe tool paths to ensure operator safety and avoid collisions, safe tool changing positions, tool path simulation, cutter diameter compensation for milling operations, assigned canned cycles, user-defined canned cycles, translation and transformation commands for mirror imaging, rotation, scaling and datum offset); choice of speeds and feeds (spindle speed, use of manufacturers feed rate data allowing for type of cutting operation, surface finish requirements, cutting tool geometry, part/tool material combinations, delicacy of part and part clamping method)

Learning outcome

The learner will:

5. Be able to produce parts using CNC machines

Assessment criteria

The learner can:

- 5.1 Describe essential **safety features** needed when setting and operating CNC machines
- 5.2 Describe the **main steps** to take when testing/proving partprograms
- 5.3 Describe **tooling systems** used in CNC machining
- 5.4 Produce simple CNC part-programs
- 5.5 Explain the functions and features available in **part-holding and setting devices** used with CNC machines

Range

Essential features

Identify precautions that need to be taken to prevent accidents when setting and operating CNC machines; be familiar with the location and function of emergency stop and program stop controls; check that guards; interlocking devices and fail safe mechanisms are operating correctly

Main steps

Set work datum and tool length offset values; perform a trial run of the part-program to identify unwanted rapid tool movements; reduce unnecessary tool movements; make adjustments to speeds and feeds or compensate for errors; look for potential hazards; tool collisions; swarf/chips problems; rapid movement of machine parts and tooling; entrapment; avoidance using machine over-ride controls; edit the partprogram if changes are required during the trial run

Tooling systems

Preset; qualified and semi-qualified tools; tool libraries; tool identification; geometry; offset values; speed; feed and tool life data; devices for monitoring tool life and cutting conditions; tool breakage detection; tool offset measurements

Simple CNC program

Use programming codes and sequence of operations to define a program; test the program with tool path simulation; implement on a CNC machine; run program; evaluate performance

Part-holding and setting devices

Conventional part-holding devices modified to suit CNC operation; positioning part datum relative to machine datum; the need for zero shift controls and how they are used; use of air and hydraulic partholding devices for gripping delicate components; methods for accurately setting part-holding devices relative to machine slide movements

Introducing CAD/CAM systems in advanced manufacturing

UAN:	D/504/4025
Level:	4
Credit value:	10
GLH:	40
Aim:	The purpose of this unit is to enable learners to develop an understanding of CAD/CAM systems used in advanced manufacturing. Learners will understand the benefits of using both systems, their application in the workplace and will be able to recommend the implementation of CAD/CAM in manufacturing processes.

Learning outcome	
The learner will:	
1. Understand the benefits of using CAD/CAM systems	
Assessment criteria	
The learner can:	
1.1 Explain the need to integrate and automate computer-based engineering applications	
1.2 Explain the philosophy of concurrent engineering	
1.3 Explain how design techniques can take advantage of CAD/CAM systems	
1.4 Describe the benefits of simulation and testing using CAD/CAM systems	
1.5 Assess rapid prototyping and other latest developments	

Range

Need

Greater flexibility; improved response to customer requirement; reduced inventory; integrated systems

Techniques

Design For Manufacture and Assembly (DFMA)

Benefits

Safety; efficiency

The learner will:

2. Understand methods of data transfer between systems

Assessment criteria

The learner can:

- 2.1 Explain the different **file formats** for transferring geometrical data from one system to another
- 2.2 Describe the data transfers between different systems
- 2.3 Describe how the **integration** of different systems can be achieved

Range

File formats

DWG, DXF, IGES, STL, VRML, HPGL, STEP

Different systems

CAD to CAM to CNC; CAD to STL and rapid prototyping; CAD to Bill of materials

Integration

High speed; fibre optic; www; LAN; high speed serial links(USB)

Learning outcome

The learner will:

3. Be able to recommend introducing CAD/CAM to manufacturing processes

Assessment criteria

The learner can:

- 3.1 Carry out **reviews** of exiting manufacturing **capabilities**
- 3.2 Define specifications for appropriate CAD/CAM systems
- 3.3 Produce **business cases** for introducing CAD/CAM systems to manufacturing processes

Range

Review

SWOT analysis

Capabilities

Staff; costs; loans; equipment; training; devaluation

Business cases

Objectives; expected benefits; options; costs; gap analysis; risk analysis

Unit 409 Engineering mathematics

UAN:	H/504/4026
Level:	4
Credit value:	15
GLH:	60
Aim:	The purpose of this unit is to enable learners to develop an understanding of a range of mathematical operations and analysis techniques that are used by other units in the qualification and are needed for the solution of many engineering problems.
	 On completion of this unit, learners will be able to: apply algebraic methods to analyse and solve engineering problems apply trigonometric methods of analysis to solve engineering problems apply differential and integral calculus methods to solve engineering problems apply complex numbers and complex analysis methods to solve engineering problems
Learning outcome	

The learner will:

1. Be able to use algebraic methods to analyse and solve engineering problems

Assessment criteria

The learner can:

- 1.1 Evaluate basic algebraic functions
- 1.2 Solve engineering problems that are described by **algebraic** equations and exponential or logarithmic functions

Range

Basic algebraic functions

Algebraic functions (graph of a function, inverse of a function, odd and even functions, linear functions, gradient of a linear function, common engineering functions (polynomial, rational, modulus, unit step, unit impulse)); use of symbols; indices (positive and negative); laws of indices; algebraic formulae (transposition, factorisation, evaluation of algebraic fractions)

Algebraic equations

Linear equations; quadratic equations; polynomial equations; simultaneous equations; solving inequalities; partial fractions

Exponential and logarithmic functions

Laws of logarithms; solving exponential and logarithmic equations

Learning outcome

The learner will:

2. Be able to solve engineering problems that require the use of trigonometric methods of analysis

Assessment criteria

The learner can:

- 2.1 Evaluate basic trigonometric functions
- 2.2 Evaluate **trigonometric identities** to solve problems involving trigonometric equations

Range

Basic trigonometric functions

Angles; sine; cosine; tangent; secant; cosecant; cotangent of an angle; inverse functions; sin⁻¹; cos⁻¹; tan⁻¹; trigonometric functions and their graphs; amplitude; frequency; phase and period of a sine or cosine function

Trigonometric identities

Compound and double angle formulae for sine and cosine; 'sums to product' and 'product to sums' formulae; solve trigonometric equations; application to resolution and resultant of forces; description of complex wave patterns

Learning outcome

The learner will:

3. Be able to use methods of differential and integral calculus to solve engineering problems

Assessment criteria

The learner can:

- 3.1 Evaluate **first and higher order derivatives** of a function involving algebraic and/or trigonometric expressions
- 3.2 Use **differential calculus** to obtain solutions for engineering applications of algebraic and trigonometric equations
- 3.3 Use **methods of integration** to determine indefinite and definite integrals of algebraic and trigonometric functions
- 3.4 Use **integral calculus** to obtain solutions for engineering applications of algebraic and trigonometric equations
- 3.5 Use **integration** to solve engineering applications of differential equations in which the variables are separable

Range

Differentiation between first and higher order derivatives based on

Rate of change of a function; derivative and gradient of a function; table of derivatives for common functions (axn, (ax \pm b)n, sinn(ax \pm b), cosn(ax \pm b), e(ax \pm b), ln(ax \pm b)) and linear combinations of these); higher derivatives

Differential calculus

Product rule; quotient rule; chain rule; implicit and logarithmic differentiation; maximum and minimum values of a function; points of inflection; applications of differentiation to engineering problems

Methods of integration

Integration as the reverse of differentiation; indefinite integrals; table of integrals for common functions (constant, axn (n \neq -1), 1/x, sin(ax \pm b), cos(ax \pm b), e(ax \pm b)), definite integrals; Integration methods: integration by parts; by substitution; using partial fractions; integration of trigonometric functions

Integral calculus

Applications of integration to areas; volumes of revolution; centres of mass; moments of inertia; mean value and root-mean-square (rms) value of an electrical signal

Integration

Apply integration methods for the solution of differential equations in which the variables are separable; general and particular solutions

Learning outcome

The learner will:

4. Be able to apply complex numbers and complex analysis to solve engineering problems

Assessment criteria

The learner can:

- 4.1 Evaluate complex equations using rectangular and polar forms of **complex numbers**
- 4.2 Use **complex function analysis** to obtain solutions to engineering problems

Range

Complex numbers

Imaginary number; $j = \sqrt{-1}$; real and imaginary parts of a complex number; complex conjugate; arithmetic of complex numbers; Argand diagram; polar form of complex numbers (modulus and argument); exponential form of complex numbers; Euler's formula; de Moivre's theorem

Complex function analysis: Solve complex equations involving complex variables; find roots of complex numbers; phasors; complex

impedances; analyse simple ac electrical circuits and measurement and control systems using complex numbers

UAN:	K/504/4027
Level:	4
Credit value:	10
GLH:	35
Aim:	The purpose of this unit is to enable learners to develop an understanding of the reasons for using robots in manufacturing and gain knowledge of the many application areas in which robots are already used. They will have knowledge of the classification and geometrical and kinematic configurations of robot arms, their accuracy and repeatability and the types of computer-based control systems used. Also, they will gain knowledge of the tooling (robot end effectors) needed for robots to carry out manufacturing tasks. Robot programming methods will be introduced in the unit and learners will have the opportunity to produce and test working robot programs. Learners will also have knowledge and understanding of the technology requirements for integrating robots into manufacturing operations involving other machines and equipment and will have a clear understanding of the safety needs of human operators when interacting with robots.

The learner will:

1. Understand the developing trends for using robots in engineering manufacture

Assessment criteria

The learner can:

- 1.1 Explain the **advantages** of using robots for manufacturing tasks
- 1.2 Describe common **application areas** for robots

Range

Advantages

Remove humans from hazardous areas; repetitive; boring tasks; lifting heavy loads; decrease labour costs; increase precision and productivity; provide more flexibility than specialised machines; consistency of performance

Application areas

Materials handling (palletising); machine loading and unloading; welding (spot and MIG welding); spray painting; assembly

Learning outcome

The learner will:

2. Understand robot arm configurations and their classifications

Assessment criteria

The learner can:

- 2.1 Explain the **principal features** of robot arms
- 2.2 Explain the **accuracy and the repeatability** of robot arms
- 2.3 Evaluate the kinematics of arm configurations
- 2.4 Evaluate the dynamics of robots
- 2.5 Evaluate the **types of control** of robots
- 2.6 Describe types and characteristics of robot end effectors

Range

Principal features

Number of arm axes (degrees of freedom); number of wrist axes(yaw, pitch, roll); working envelope; joint types (revolute R, prismatic P); arm configurations (articulated-RRR, spherical-RRP, SCARA-RRP, cylindrical-RPP, Cartesian-PPP); payload; power sources (hydraulic, electric motors, pneumatic)

Accuracy and the repeatability

As specified in ISO 9283

Kinematics

Forward and inverse kinematic calculations on a two-link plan arm mechanism to illustrate arm position and velocity control calculations; singularities

Dynamics of robots

Characteristics of robot arms; sensors and sensor interfaces for communication with other machines

Types of control

Non-servo (open loop) with mechanical stops; servo point-to-point (discrete position control); continuous path control (motion and orientation along path is controlled)

Types

Gripper (for material transfer); electromechanical or pneumatic; vacuum Operation; welding gun (MIG-welder, spot-welder); paint spray gun; grinding and de- burring tools

Characteristics

Tools may have sensors fitted to aid locating, handling and positioning

components

Learning outcome

The learner will:

3. Be able to produce working robot programs

Assessment criteria

The learner can:

- 3.1 Explain the **steps required** to program robot arms
- 3.2 Describe robot programming methods
- 3.3 Produce working simple robot programs

Range

Steps required

Use of program flow charts to define the program steps and sequential logic; implement the program; evaluate program performance

Methods

Teach pendant programming; lead-through programming (for paint spraying); offline programming (based on computer model of the robot and its environment)

Working

creation; evaluation; implementation

Learning outcome

The learner will:

4. Understand robot cell design

Assessment criteria

The learner can:

- 4.1 Explain the **safety aspects** needed in robot cells
- 4.2 Describe **operator supervision and control features** in robot cells
- 4.3 Evaluate the **design** of robot-controlled work cells

Range

Safety aspects

Emergency stop controls; safety interlock systems; cell fencing (including

light curtains); integration with other cell component systems

Operator supervision and control features

Switch between programs; make program adjustments; set and reset peripheral devices in the cell including component feeders; conveyor systems; machine vision systems; cell PLC or computer controller

Design evaluation

Examine cell designs for common robot application areas in manufacture (machine loading/unloading, welding, spray painting, assembly)

UAN		
Leve	-	4
Crea	dit value:	10
GLH		52
	: rning outcome learner will:	The purpose of this unit is to enable learners to develop an understanding of Statistical Process Control and the application of statistical tools and methodology to achieve process control, the acceptability of product quality and determine process capability. The unit will extend the learner's knowledge and understanding in an area closely related to Quality Assurance and Quality Control and give the opportunity to apply and develop previously acquired knowledge of mathematical statistics.
1. l		itatistical Process Control (SPC) is used as a hnique
Ass	essment criteria	
The	learner can:	
1.1	Explain the prine	ciples of continuous improvement
1.2	Explain the key f	features of normal distribution curves
1.3	Describe the use applications	e of normal distribution curves for six sigma
1.4	Explain the differ charts	rence between types of data used in control
1.5	Identify control	chart datum values
1.6	Explain how to ir process	nterpret control charts to monitor production
Ran	a 0	

Adding value to products; waste management (Toyota's 7 Wastes); effects of quality on real costs of production

Features

Mean; standard deviation

Types of data

Attribute; variable

Control charts

c charts; p charts; u charts

Datum values

Upper warning or control limits (UCL); lower warning or control limit (LCL); the centre line (actual nominal size); the upper and lower action limits.

Interpretation of control charts

Causes of variation (tool wear, vibration, coolant, environmental changes, human error)

Learning outcome

The learner will:

2. Understand the use of statistical techniques in consumer and producer sampling schemes

Assessment criteria

The learner can:

- 2.1 Explain the principles of acceptance sampling
- 2.2 Justify the **application** of acceptance sampling
- 2.3 Evaluate different **types** of sampling plans

Range

Acceptance sampling

Producer's risk quality (PRQ); Consumer's risk quality (CRQ)

Application

Testing is destructive; cost of 100% inspection is prohibitive; 100% inspection is too time consuming

Types

Single sampling; double sampling; multiple sampling; sequential sampling

Learning outcome

The learner will:

3. Be able to apply statistical techniques to sampling plans

Assessment criteria

The learner can:

- 3.1 Justify the use of sampling schemes to ensure levels of quality are achieved
- 3.2 Calculate **metrics** used for sampling plans
- 3.3 Explain the significance of **lot sizes** in sampling plans

Range

Metrics

Acceptable Quality Level (AQL); Lot Tolerance Percent Defective (LTPD); Type 1 Error (Producers Risk) and Type 2 Error (Consumer's Risk); Average Outgoing Quality (AOQ); Average Total Inspection (ATI).

Lot sizes

Large lot; small sample size (non-replaced)

Learning outcome

The learner will:

4. Understand how to determine manufacturing process capabilities

Assessment criteria

The learner can:

- 4.1 Explain **statistical capability indices** used to determine process capabilities
- 4.2 Explain the application of **statistical capability indices**

Range

Statistical capability indices

LSL, USL, T, Cp, Cpk, and Cpm

Learning outcome

The learner will:

5. Be able to determine process capabilities

Assessment criteria

The learner can:

- 5.1 Calculate statistical capability indices
- 5.2 Evaluate the process capability of manufacturing cases where data is normally distributed

Range

Calculation of statistical capability indices

Cp = (USL—LSL)/6 σ (where σ is the standard deviation)

Cpk = min [(USL- μ)/3 σ)(μ -LSL)/ 3 σ] (where μ is the mean)

Cpm= (USL-LSL)/ 6{ σ^2 + (μ -T)²

Unit 412 Metal fabrication technology

UAN:	M/504/4031
Level:	4
Credit value:	15
GLH:	75
Aim:	The purpose of this unit is to enable learners to develop an understanding of a broad range of processes used within the fabrication and welding sector including forming, cutting and joining. This knowledge will allow candidates to assess the suitability of various methods and techniques to suit practical situations in the workplace. A range of welding and cutting processes are also considered to inform production decisions.

Learning outcome		
The learner will:		
1. Understand metal forming processes		
Assessment criteria		
The learner can:		
1.1 Explain the principles of metal forming		
1.2 Explain the principles of press braking processes		
1.3 Explain axisymmetric forming methods		

1.4 Explain **die forming applications**

Range

Principles

Effect of metal properties; metal thickness; hot/cold forming.

Principles

Types of press brakes and tooling; inspection and testing of press brakes (National – (UK:PUWER; International standards); calculation of vee die openings and punch force; application of CNC control to press braking

Axisymmetric forming

Spinning; flow forming

Die forming applications

Principles of die forming; equipment; calculations of blank size, clearance and tonnage requirements; lubrication

The learner will:

2. Understand metal joining methods

Assessment criteria

The learner can:

- 2.1 Explain **bolting procedures**
- 2.2 Explain sheet metal jointing
- 2.3 Explain structural steelwork joining **methods**
- 2.4 Explain **principles** of different **types** of welding processes

Range

Bolting procedures

Joint, bolt and gasket preparation; application of torque or tension; procedure documentation; jigs and fixtures

Sheet metal jointing

Clinch joints; riveting including aero applications; resistance welding; jigs and fixtures

Methods

Stanchion splices; web cleats; roof trusses; lattice girders; web stiffeners; jigs and fixtures

Types and Principles of processes

• Manual Metal Arc Welding

Safety; applications; equipment; consumables; jigs and fixtures

• Tungsten Arc Gas Welding

Safety; applications; equipment; consumables; jigs and fixtures

• Metal Arc Gas Welding

Safety; applications; equipment; synergic control; consumables; jigs and fixtures

• Flux Cored Metal Arc Gas Welding

Safety; applications; equipment; synergic control; consumables; jigs and fixtures

Learning outcome

The learner will:

3. Understand metal cutting methods

Assessment criteria

The learner can:

- 3.1 Explain metal fabrication cutting methods and equipment
- 3.2 Explain mechanical cutting methods and equipment

Range

Cutting methods and equipment used

• Oxy-fuel

Safety; equipment; gases; procedures; mechanisation.

• Air Plasma

Safety; plasma theory; equipment; procedures, mechanisation/CNC control

Water Jet cutting

Safety; abrasives; applications

Mechanical cutting methods and equipment

• Cutting by shear processes

Shear theory; guillotines; punching; blanking; calculation of punching force; tool clearance calculations

• Chip forming cutting processes

Chip theory; reciprocating saws; band saws; circular saws; drilling machines and drill nomenclature; coolants.

Learning outcome

The learner will:

4. Understand surface protection methods

Assessment criteria

The learner can:

- 4.1 Explain preparation methods for surface protection
- 4.2 Explain **methods** of surface protection of fabrications

Range

Preparation methods

Shot blasting; sand blasting; pickling; dry ice blasting; degreasing

Methods

Painting; powder-coating; galvanising; phosphating; anodising; plating; plastic coating

Learning outcome

The learner will:

5. Be able to specify processes for fabricated products

Assessment criteria

The learner can:

- 5.1 Select appropriate fabrication manufacturing processes including cutting, forming, jigs and fixtures, joining and finishing
- 5.2 Produce fabrication process specifications

Unit 413 Welding technology and practice

UAN:	L/504/4036
Level:	4
Credit value:	10
GLH:	35
Aim:	The purpose of this unit is to enable learners to develop an understanding of a broad range of welding processes. This knowledge will allow candidates to be able to identify a preferred welding process for various production situations. It will also highlight a variety of defects that could be attributable to incorrect welding process, joint design or material properties. In addition, candidates will develop skills and understanding that will allow them to consider the cost implication of each process and the benefits of the mechanisation of each process when applicable.

Learning outcome		
The learner will:		
1. Understand advanced welding processes		
Assessment criteria		
The learner can:		
1.1 Explain the TIG/TAG welding process		
1.2 Explain the MIG/MAG welding process		
1.3 Describe specialised welding processes		

Range

TIG/TAG

Electrical parameters; gas selection; pulsed applications; hot wire process; mechanised applications.

MIG/MAG

Electrical parameters; gas selection; modes of transfer; pulsed applications; flux cored electrodes; mechanised applications

Specialised

Laser; electron beam; plasma arc; friction stir

The learner will:

2. Understand failure modes of welded joints

Assessment criteria

The learner can:

- 2.1 Explain **aspects** that affect notch toughness
- 2.2 Explain **principles** of fatigue and creep failure
- 2.3 Explain design considerations to prevent weld joint failure

Range

Aspects

Material properties; corrosion; environmental conditions; testing

Principles

Stress concentrations; S-N curves; prevention of failure

Design considerations

Access; hydrogen control; restraint; weld preparation; welding process

Learning outcome

The learner will:

3. Understand how to select appropriate welding processes

Assessment criteria

The learner can:

- 3.1 Identify **mechanical factors** that affect the selection of welding processes
- 3.2 Identify **cost factors** that affect the selection of welding process
- 3.3 Explain the **mechanisation** of the welding process

Range

Mechanical factors

Material type; material thickness; joint design; application; corrosion resistance; aesthetics

Cost factors

Initial set up costs; electrical efficiency; consumable costs; deposition rates, skill requirements

Mechanisation

Synergic parameter control; mechanisation techniques including robotics and orbital welding

The learner will:

4. Be able to specify welding processes and design criteria for products

Assessment criteria

The learner can:

- 4.1 Identify joint geometry and materials from design specifications
- 4.2 Produce welding process specifications

Unit 414 Quality assurance and testing of welded joints

UAN:	F/504/4034
Level:	4
Credit value:	10
GLH:	43
Aim:	The purpose of this unit is to enable learners to develop an understanding of the requirements of quality and assurance systems in the welding and fabrication sector. This unit covers welder certification, weld testing and the identification and maintenance of relevant documentation to ensure welding quality is assured.

Learning outcome

The learner will:

1. Know quality assurance methods used in welding

Assessment criteria

The learner can:

- 1.1 Identify **quality requirements** for fusion welded metallic joints
- 1.2 Outline the **competence required** for the welding co-ordinator
- 1.3 Describe different **elements** of quality specifications
- 1.4 Explain **quality levels** of imperfections or defects in welded joints

Range

Quality requirements

As defined in BS EN 3834 (or national equivalent); traceability

Competence required

As defined in EN ISO 14731 (or national equivalent).

Elements

Welding procedure qualification and specification as defined in ISO 15614 (or national equivalent); weld maps; certification of welder competence as defined within appropriate national standards

Quality levels

Levels B, C and D as identified in BS EN ISO 5817:2007 (or national equivalent)

The learner will:

2. Understand weld testing methods

Assessment criteria

The learner can:

- 2.1 Explain non-destructive testing techniques
- 2.2 Explain **destructive** testing techniques

Range

Non-destructive

Visual; penetrant testing; magnetic particle; ultrasonic; radiographic

Destructive

Macro/micro; nick break; bend testing; tensile testing; CTOD; weld coupons

Learning outcome

The learner will:

3. Be able to produce quality assurance specifications

Assessment criteria

The learner can:

- 3.1 Identify **quality levels** of imperfections relevant to welded components
- 3.2 Produce welding specification sheets
- 3.3 Recommend the appropriate level of welder certification
- 3.4 Specify testing techniques for welded components
- 3.5 Produce weld maps

Range

Quality levels

Levels B, C and D as identified in BS EN ISO 5817:2007 (or national equivalent)

Unit 415 Maintenance of engineering systems and equipment

UAN:	Y/504/4041
Level:	4
Credit value:	15
GLH:	56
Aim:	The purpose of this unit is to enable learners to develop an understanding of how to plan for and carry out maintenance work on systems and equipment used in manufacturing operations.

Learning	outcome
Louining	outcome

The learner will:

1. Understand maintenance planning in engineering

Assessment criteria

The learner can:

- 1.1 Outline **regulations** required to be used for the maintenance of equipment and systems
- 1.2 Evaluate **maintenance strategies** used for different systems and equipment
- 1.3 Assess **factors** in determining maintenance plans

Range

Regulations

UK current or international equivalents of: (statutory and non-statutory including Codes of Practice) - Electricity at Work Regulations (1989), BS7671, GS 38 or international equivalents, Health & Safety Act (1974), Building Regulations (2000), Management of Health & Safety at Work Regulations, Reporting of Injuries, Diseases & Dangerous Occurrences Regulations, Provision & Use of Work Equipment Regulations, Manual Handling Operations Regulations, Personal Protective Equipment at Work Regulations, Work at Height Regulations, Control of Substances Hazardous to Health Regulations, Control of Asbestos at Work Regulations

Maintenance strategies

Breakdown; preventative; periodic; predictive; corrective Maintenance Prevention – as part of Total Productive Maintenance (TPM)

Factors

System functions; system failures; failure consequences; failure processes

The learner will:

2. Understand mechatronics in industrial systems

Assessment criteria

The learner can:

- 2.1 Explain key components of industrial systems
- 2.2 Outline the **architecture** of various types of industrial systems
- 2.3 Evaluate the **features** of conventional and mechatronic systems
- 2.4 Evaluate the **use of fieldbus networks** in industrial network systems

Range

Key components

Input devices; prime movers; gearing; controllers; output devices

Architecture

Controller; correction element; process; outputs; logical sequence of events; construct block diagrams

Features

Centralised control or distributed control; hard wiring or networks; sequence control or intelligent individual control; relay logic *or* software programming; plant maintenance or predictive maintenance

Use of fieldbus networks

Requirement for multiple devices in a process control system to communicate with each other without conflict; cost, complexity, competing fieldbus standards – compatibility between components (eg sensors and actuators); Ethernet based systems

Learning outcome

The learner will:

3. Understand the principles of sensors in mechatronics

Assessment criteria

The learner can:

- 3.1 Evaluate the operation and application of **sensors** in control systems
- 3.2 Evaluate the operation of **signal conditioning systems** for use in mechatronics
- 3.3 Explain the **terms** applied to sensors used in mechatronics

Range

Sensors

Contact: micro switch, snap action limit switch, wobble stick, pressure mat, positively guided safety switch, level switch

Non-contact: inductive proximity, capacitive proximity, optical proximity, light curtain, thermocouple, strain gauge, differential pressure, impeller flow, encoder (incremental and absolute), resolver, vibration transducer, motion sensor

Signal conditioning systems

Purpose; isolation; amplification; excitation; monitoring; conversion (voltage to current, current to voltage, pressure to voltage, pressure to current, analogue to digital, digital to analogue, frequency to voltage, frequency to current, sink to source, source to sink)

Terms

Sensitivity; repeatability; resolution; dead band; alignment; compatibility; cross talk; grounding; calibration; noise; discrimination; linearity; dynamic error

Learning outcome

The learner will:

4. Understand the principles of actuation systems

Assessment criteria

The learner can:

- 4.1 Evaluate the use of **control and actuation systems** in mechatronics
- 4.2 Assess the operation of **pneumatic power systems** and their **components**
- 4.3 Assess the operation of **hydraulic power systems** and their **components**
- 4.4 Assess the operation of **electrical actuation systems** and their **components**
- 4.5 Assess the operation of **mechanical systems**
- 4.6 Describe the **symbols** used in actuation **systems**

Range

Control and actuation systems

Pneumatic; hydraulic; electrical

Pneumatic power systems

Prime mover (ie motor); compressor (ie two stage reciprocating); silencer; filter; pressure relief valve; cooler; filter and water trap; air receiver; pipe work distribution system

Components

Valves (directional control valves (DCV) – spool, 3/2, 4/2, 5/2, directly operated, pilot operated, solenoid operated, poppet)

Directional valves (one way, one way restrictor return)

Pressure control valves (pressure regulating, pressure limiting, pressure sequence)

Proportional process control valves (pneumatic diaphragm actuator, linear contoured, equal)

Actuators (Linear actuators – single acting, double acting, fluid muscle, tandem, multi position, stick slip phenomenon; Rotary actuators – use of linear actuator to produce rotation, vane-type semi-rotary, vane motor)

City & Guilds Level 4 Diploma in Advanced Manufacturing Engineering (2875-40)

Hydraulic power system

Prime mover (ie motor); pump; non return valve; pressure relief valve; accumulator (ie bladder-type); sump; hydraulic oil; pipe work distribution system and return

Components

Valves (directional control valves (DCV) – spool, 3/2, 4/2, 5/2, directly operated, pilot operated, solenoid operated, poppet)

Directional valves (one way, one way restrictor return)

Pressure control valves (pressure regulating, pressure limiting, pressure sequence, proportional)

Electrical actuation systems:

Switching devices (push buttons, relays, thyristor, TRIAC, solid state relay, solenoid devices)

Motors (series d.c., shunt d.c., separately excited d.c., stepper, servo, single phase induction, three phase induction)

Motor control (basic d.c. motor speed control (ie, inverter drive), basic induction motor speed control (ie, inverter drive), basic stepper motor controllers, basic servo motor controllers)

Components

Benefits over hard wired systems; communications interface to control system; basic requirements of wiring medium (ie CAT 5, screening, grounding); types of distributed input /output modules (ie digital, analogue) terminations (insulation displacement connection (IDC), RJ-45, DIN, BNC)

Mechanical system

Prismatic motion; revolute motion; sliding joints; revolving joints; force amplification (ie levers); change of speed (ie gears); transfer of rotation (ie belts and chains); types of motion (ie quick return mechanism); cams and cam followers; change of direction (ie bevel and worm gear); linear to revolute / revolute to linear (ie rack and pinion); bearings (ie plain roller needle and ball)

Symbols

Flow path; flow shut-off; initial connections; push button operation; lever operation; roller operation; plunger operation; spring operation; solenoid operation; pedal operation; pilot operation; 2/2 valve; 3/2 valve; 4/2 valve; 5/2 valve; non return valve; pressure limiting valve; regulator; pressure source; exhaust; filter; single acting cylinder; double acting cylinder; rotary actuator

Systems

Pneumatic; hydraulic; electrical

The learner will:

5. Be able to plan for maintenance operations

Assessment criteria

The learner can:

- 5.1 Evaluate the **safety factors** affecting maintenance operations
- 5.2 Evaluate **sources of information** used to facilitate maintenance of systems and equipment
- 5.3 Produce operational maintenance **documentation**
- 5.4 Assess **physical and human resources** required to carry out maintenance of systems and equipment

Range

Safety factors

Area; safety requirements; equipment; barriers and enclosures; safe isolation procedures; selection of safe isolation methods for: electrical systems and pressurised systems (ie hydraulic; compressed air; water; gas); notification of personnel and other workers; Personal Protective Equipment (PPE); switchgear requirements; Environmental considerations; provision for safe storage of tools; equipment and materials; arrangements for working at height and in confined spaces

Sources of information

Component data; availability of materials; e-diagnostics; drawings; diagrams (circuit and wiring); maintenance schedules/specifications; data charts; manufacturer's manuals; servicing records/running logs; flow charts; standard maintenance time records

Documentation:

Risk assessments; method statements; safe isolation procedures; Permits to work; work plan (including definition of tasks, planned shut downs/isolations, safety precautions (provision for release of stored and latent energy), communication with relevant stakeholders, time/cost effectiveness, work over-run notification procedures)

Physical and human resources

Physical: tools and equipment (power tools, hand tools, lighting, power supplies, diagnostic equipment, temporary services, access equipment, safety equipment (fall-arrest gear, gas tester, breathing apparatus), mechanical handling equipment); works orders; requisitions; contracts; tendering

Human: company-based maintenance staff; sub-contractor involvement; skills and competence of involved personnel; training needs; licence / authority to work

City & Guilds Level 4 Diploma in Advanced Manufacturing Engineering (2875-40)

The learner will:

6. Be able to carry out maintenance procedures on systems and equipment

Assessment criteria

The learner can:

- 6.1 Assess the **safety** of **systems** prior to undertaking maintenance operations
- 6.2 Apply maintenance procedures to systems and equipment
- 6.3 Evaluate the **performance** of maintained systems and equipment
- 6.4 Apply **re-commissioning** processes on completion of maintenance activities

Range

Safety

Safe isolation procedures in accordance with regulatory requirements for systems and equipment; the Health and Safety of personnel within the work location

Systems

Electrical; pneumatic; hydraulic

Maintenance

Planned preventative (periodic, predictive); breakdown/corrective (including fault diagnosis/rectification)

Procedures

Complying with manufacturer's instructions, industry approved practices, maintenance schedules and specifications

Electrical, Hydraulic and pneumatic: loss of supply; overload; short circuit and earth fault; transient voltage; loss of phase/line; incorrect phase rotation; high resistance joints

Mechanical: component; accessory or equipment faults)

Systems

Pneumatic radial, Pneumatic ring, Hydraulic, components and accessories

Electrical: Three-line four wire distribution systems; ELV and LV single and multiphase circuits; lighting systems heating and ventilating systems; air conditioning and refrigeration systems; drive systems, security systems; earthing systems and data communication systems

Equipment

Electrical plant; components and accessories; motors and starters; switchgear and distribution panels; control systems and components; contactors; power transmission mechanisms; luminaires and lamps

Performance

Using suitable test methods

Re-commissioning

Safety before re-energising; check all systems in place and re-set; prescribed start up procedures; electrical; mechanical and pneumatic/hydraulic checks.

Dispose of hazardous substances: oils; greases; cleaning agents; solvents; insulation; adhesives; fillers; packing; lagging.

Complete reports: maintenance schedules; clear permits to work and sign off; diaries; materials used; record likely future requirements; update maintenance schedule; complete hand over

Unit 416 Instrumentation and Control Principles

UAN:	J/601/1417
Level:	4
Credit value:	15
GLH:	60
Aim:	The purpose of this unit is to enable learners to develop an understanding of the principles and practice of instrumentation and control in process industries.

Learning outcome
The learner will:
1. Understand instrumentation systems used in process control
Assessment criteria
The learner can:
1.1 Describe the terminology used in process measurements
1.2 Evaluate a range of sensors and transducers with reference to manufacturers' terminology
1.3 Explain the construction and operation of modern sensors used to measure pressure, level, temperature and flow
1.4 Describe typical applications for the sensors examined
1.5 Explain signal conditioning and transmission
Range

Terminology

Accuracy; error; repeatability; precision; linearity; reliability; reproducibility; sensitivity; resolution; range; span; zero drift; hysteresis

Sensors

Pressure; level; flow; temperature; displacement

Transducers

Pressure; level; flow; temperature; displacement

Signal conditioning

Industry-standard devices; industry-standard signal ranges and conversion between them

Transmission

Pneumatic; hydraulic; electrical; fibre-optic; wireless

The learner will:

2. Understand process control systems and controllers

Assessment criteria

The learner can:

- 2.1 Explain the **need for process control**
- 2.2 Describe process control terminology
- 2.3 Determine the medium required for successful transmission
- 2.4 Name sensors, conditioners and display units for a range of specific purposes
- 2.5 Examine **tuning techniques**
- 2.6 Describe the control actions required for different systems
- 2.7 Represent systems using **standard diagrams**

Range

Need for process control

Quality; safety; consistency of product; optimum plant performance; human limitations; efficiency; cost; environmental considerations

Process control terminology

Deviation; range; span; absolute deviation; control effect; set point; process variable; manipulated variable; measured variable; bumpless transfer; process variable tracking; direct and reverse acting; offset; on-off control; two step control; cycling; three-term control (proportional band, gain, proportional, proportional with integral, proportional with integral and derivative, proportional with derivative); system terminology (distance velocity lags, transfer lags, multiple transfer lags, capacity, resistance, dead time, reaction rate, inherent regulation, open loop, closed loop, load, supply, static gain, dynamic gain, stability, loop gain)

Tuning techniques:

Zeigler-Nichols; continuous cycling; reaction curve; ¼ decay methods; tuning for no overshoot on start-up; tuning for some overshoot on start-up

Standard diagrams:

P and I; loop; wiring; flow; block

Learning outcome

The learner will:

3. Understand the use of regulating units

Assessment criteria

The learner can:

3.1 Identify the main **parts** of a regulating unit

- 3.2 Evaluate a regulating unit with reference to standard **terminology**, including manufacturers' specifications
- 3.3 Select the plug characteristics required for a specified process
- 3.4 Describe the **characteristics** of a range of regulating units
- 3.5 Describe the use of valve positioners

Range

Parts

Body; trim; plug guide and seat; valve; stem; bonnet; packing gland; yoke; actuator; motor

Terminology

Stroke; direct and reverse action; air fail action; repeatability; constant velocity; turndown; flow characteristics; linear; equal percentage; quick-opening; modified parabolic; split range

Characteristics

Dampers; power cylinders; louvres; valve positioners; valves (globe; ball; diaphragm; gate; double seated; 3-way; solenoid; split bodied; butterfly)

Unit 417 Engineering Procurement

UAN:	F/601/1500
Level:	4
Credit value:	15
GLH:	60
Aim:	The purpose of this unit is to enable learners to develop an understanding of procurement for engineering operations.

Learning outcome

The learner will:

1. Understand the principles of resource management and its application to an engineering operation

Assessment criteria

The learner can:

- 1.1 Assess the **methods** available for managing materials
- 1.2 Explain the **principles** involved when procuring equipment and the ongoing requirements over the life of that equipment

Range

Methods

Selection; acquisition; maintenance; replacement criteria; storage; handling logistics

Principles

Procurement strategy; specification; supplier identification; selection criteria; working with specialist suppliers; stock control; maintenance strategy

Learning outcome

The learner will:

2. Understand how the procurement strategy contributes to the achievement of an engineering operation's objectives

Assessment criteria

The learner can:

- 2.1 Recommend procurement **systems and processes** with related performance indicators and benchmarking for an engineering operation
- 2.2 Analyse the **risks** involved in a procurement strategy
- 2.3 Examine the role of the procurement officer within an engineering operation

Range

Systems and processes

Standard specification; tendering; estimating/quoting; methods of procurement (centralised, contract, lease) Pareto analysis; 'just in time' (JIT); services; terms and conditions; risk register

Risks

Financial; physical; task duplication; direct and indirect costs; effect on the internal and external customer (quality assurance and control, legal implications); effect on process and outcome activities of organisations; assessing operational needs; selecting suppliers; timing; company policies; budgetary restrictions (discounts, receipt and control of purchases, wastage factors)

Learning outcome

The learner will:

3. Understand the importance of the procurement contract and its application to engineering operations

Assessment criteria

The learner can:

- 3.1 Explain the importance of a procurement contract
- 3.2 Evaluate the **sourcing issues** for a procurement situation using a range of suppliers
- 3.3 Review the **management techniques** used to appraise and evaluate the suppliers of an engineering management operation

Range

Sourcing issues

Method of supply (buying products/services, tendering, subcontracting/ outsourcing); value for money; hygiene factors; choice; service guarantee; legal and contractual compliance; trace origin data; methods of payment; credit and price; volume of product; negotiating skills

Management techniques include review of

Communication; attitude to customers; compliance with procurement specification (cost, size, quantity); sample testing and defect elimination; delivery

Learning outcome

The learner will:

4. Understand procurement pricing and management strategies within an engineering organisation

Assessment criteria

The learner can:

- 4.1 Explain the **management strategies** that can be used to maximise the purchasing power of the procurement officer
- 4.2 Compare **pricing management techniques** used in an engineering procurement situation

Range

Management strategies

Competition between suppliers; developing profit margins to increase financial returns; releasing cash and capital by minimising stock; negotiating extended credit; determining the right quality for the right application; negotiating and developing delivery schedules

Pricing management techniques

Negotiating price reductions; controlling or resisting price increases; quantity discounts; prompt payment discounts

Learning outcome

The learner will:

5. Be able to review and evaluate procurement strategies within an engineering organisation

Assessment criteria

The learner can:

- 5.1 Plan a **review** and **evaluation** to measure the success of a company's procurement strategy
- 5.2 Conduct a **review** and **evaluation** for a procurement scenario in an engineering operation

Range

Review

Standard specifications; terms and conditions; monitoring; redeveloping strategy; contemporary developments; comparing and contrasting purchasing options

Evaluation

Cost models (return on investment); productivity gain; human resource benefits; value added analysis

Unit 418 Engineering design

UAN	:	R/504/9626
Leve	: :	4
Cred	lit value:	15
GLH:		60
Aim:		The purpose of this unit is to enable learners to develop an understanding of the principles and processes involved in engineering design.
		On completion of this unit, learners will be able to
		 use computer software to develop design drawings or schemes develop design specifications to meet customer requirements.
Lear	ning outcome	
The l	earner will:	
	Inderstand how to se neet given specificati	elect and justify design solutions required to ions
Asse	essment criteria	
The l	earner can:	
1.1	Analyse possible de	sign solutions
1.2	Evaluate conceptua	0
1.3	Justify selected desi	gn solution
1.4	Assess compliance	of design solution
Lear	ning outcome	
The	•	

The learner will:

2. Be able to use computer software to develop design drawings or schemes to meet design specifications

Assessment criteria

The learner can:

- 2.1 Explain the key features of **computer software** in the design for manufacture process
- 2.2 Use computer software to produce design drawings or schemes
- 2.3 Review available computer software that can assist the design process

Range

Computer software

CAD; CAM

The learner will:

3. Understand how to justify selected product designs for economic manufacture

Assessment criteria

The learner can:

- 3.1 Explain the advantages and disadvantages of **standardisation**
- 3.2 Describe the **elements** involved in the total cost of manufacture
- 3.3 Review manufacturing processes and material requirements for components

Range

Standardisation

Product; components; manufacturing process

Elements

eg materials; labour; overheads; compliance fees; development and testing; marketing

Learning outcome

The learner will:

4. Be able to develop design specifications to meet customer requirements

Assessment criteria

The learner can:

- 4.1 Research customer requirements including **design parameters**
- 4.2 Use design information from appropriate **sources** to prepare design specifications
- 4.3 Assess customer requirements against design limitations

Range

Design parameters

eg off the shelf solution; safety standards; national, international industry standards (eg BSI, CE); compatibility with existing/emerging technologies

Sources

eg client; designer; stress engineer; production designer; procurement; marketing; regulatory authorities; legal/patent team; business case

Design limitations

eg cost; practicality; available technology; materials; production process; reliability of product; manufacturing type (mass, batch, bespoke)

Unit 420 Planning and implementing change within businesses

H/504/2910
4
10
30
This unit is linked to the Business and Administration NOS, BAA114.
This unit is endorsed by the Council for Administration.
The purpose of this unit is to enable learners to develop an understanding of the need to plan, manage and implement organisational change in a positive way to ensure that the organisation and its employees benefit from the change. Learners will also gain an understanding of how to evaluate the change process and how to use various tools and techniques
how to evaluate the change process and

Learning outcome	
The learner will:	
1. Understand the need for managing organisational change	
Assessment criteria	
The learner can:	
1.1 Describe the internal and external factors that contribute to the need for change in organisations	

- 1.2 Analyse different **types** of organisational change
- 1.3 Explain the **benefits** of planning organisational change

Range

Internal factors

Strategic; organisational; sector led objectives; resources eg human; financial; physical; technological.

External factors

Environmental; political; legal; economic; technological.

Types

Strategic; structural; process orientated; people centred.

Benefits

Change is planned and managed; reduces stress levels on individuals; maximise efficiency of existing resources; more opportunities for development; increased skills.

Learning outcome

The learner will:

2. Understand the change process within business environments

Assessment criteria

The learner can:

- 2.1 Explain **processes** for managing change
- 2.2 Explain why **organisational culture** has a **role** in the management of change

Range

Processes

Learners should be encouraged to refer to current theories and processes eg Kotter's 8 Steps, Dunphy and Stace.

Organisational culture

Learners should be encouraged to refer to specific theories on organisational culture eg Thomas Handy: power culture, role culture, task culture, person culture.

Role

In terms of ensuring clear communication, committed managers, modelling cultures through actions, recognition, change in physical environment.

Learning outcome

The learner will:

3. Understand the importance of effective leadership and management in the change process

Assessment criteria

The learner can:

- 3.1 Explain the **skills** needed to manage people through organisational change
- 3.2 Describe **reasons** for individuals to resist change
- 3.3 Explain how leaders and managers can **overcome** resistance to change

Range

Skills

Use of effective communication; giving feedback; understanding behaviours/styles; managing performance; team working.

Reasons

Disbelief/anxiety; failure to understand problem; mistrust; demotivation; frustration.

Overcome

Resistance to change eg how organisations encourage participation, empathy, feedback, trust, be open to revision of plans. Learners should refer to specific theories such as Tannenbaum and Schmidt.

Learning outcome

The learner will:

4. Be able to evaluate the change process in organisations

Assessment criteria

The learner can:

- 4.1 Describe how to **monitor** the implementation of change
- 4.2 Explain the importance of evaluating the efficiency and effectiveness of the implementation process
- 4.3 Use **techniques** to evaluate the change process
- 4.4 Recommend procedures by which the change process can be continually improved

Range

Monitor

Use of planning tools to monitor cost, quality, adherence to change programme, timescales eg how it can be used for continuous improvement.

Techniques

Learners should be given an understanding of the following techniques before applying them:

- identifying the benefits of change through SWOT analysis
- force field analysis
- measuring against standards.

Unit 421 Personal and Professional Development

UAN:	K/504/1449
Level:	4
Credit value:	10
GLH:	25
Relationship to NOS:	This unit is linked to the Business and Administration NOS, BAA627.
Endorsement by a sector or regulatory body:	This unit is endorsed by the Council for Administration.
Aim:	The purpose of this unit is to enable learners to develop an understanding of the different methods and resources available to them to help them plan for their personal and professional development.
	They will learn how to identify factors that may affect targets or goals, prioritise actions and how feedback from others can be utilised to aid their development and career progression. They will be able to develop a plan which can either be used during progress of a course of study or as a tool for their future or current career path.

Lear	rning outcome
The	learner will:
1. Understand how to plan for personal and professional development	
Assessment criteria	
The	learner can:
1.1	Describe the benefits of personal and professional development

- 1.2 Identify **development opportunities** for career and personal progression
- 1.3 Analyse development opportunities that may support career and personal progression

Range

Benefits

• Personal - update skills, gain new skills, increase motivation, confidence.

• Professional - career progression, meeting organisation goals, how role fits into organisation.

Development opportunities

Skills; knowledge; qualifications; enterprise opportunities.

Internal and external development opportunities with reference to skills; knowledge; qualifications; enterprise opportunities with reference to benefits for self and organisation.

Learning outcome

The learner will:

2. Understand how people learn

Assessment criteria

The learner can:

- 2.1 Explain the **principles** of how people learn
- 2.2 Describe different learning styles
- 2.3 Evaluate learning resources to support development
- 2.4 Analyse the use of different learning strategies

Range

Principles

Relevant theories; methodologies; pedagogies.

Learning resources

Libraries; organisation's resources; IT; Internet.

Learning outcome

The learner will:

3. Be able to produce personal and professional development plans

Assessment criteria

The learner can:

- 3.1 Carry out **self-audit** of skills and experience
- 3.2 Identify targets for personal and professional development
- 3.3 Use **methods** to track personal development
- 3.4 Create a personal and professional development plan

Range

Self-audit

Feedback from others; skills scan; looking at job role.

Targets

SMART target setting. Learners should investigate and select appropriate mechanisms to monitor own progress.

Methods

Task manager; blog; project management tools; diaries; performance review/plan; objectives.

The learner will:

4. Be able to make recommendations for personal and professional development

Assessment criteria

The learner can:

- 4.1 Explain the **benefits** of reflective practice
- 4.2 Evaluate **progress** against development plan
- 4.3 Recommend opportunities for further development

Range

Benefits

Extent to which targets have been met/not met including any changes in expectations; further support required; barriers to progress.

Progress

The learner should identify further personal and professional development.

Unit 422 Project Management

UAN:	T/504/1129
Level:	4
Credit value:	15
GLH:	50
Relationship to NOS:	This unit is linked to the Business and Administration NOS, BAA151 and BAA152.
Endorsement by a sector or regulatory body:	This unit is endorsed by the Council for Administration.
Aim:	The purpose of this unit is to enable learners to develop an understanding of the principles of project management and how projects are set up. Learners will gain an understanding of how to mitigate for risks and develop their skills in using management tools to monitoring and reviewing projects.

Lear	Learning outcome	
The learner will:		
1.	Understand why organisations use project management	
Assessment criteria		
The l	earner can:	
1.1	Describe the principles of project management	
1.2	Explain the benefits of project management to organisations and individuals	
<u> </u>		

Range

Principles

Business justification; learning from experience; defined roles and responsibilities; manage by stages; manage by exception; focus on products; objectives; constraints; lifecycle.

Benefits

Possible benefits will include: Increased efficiency; improved customer satisfaction; organisations may be more effective in delivering services; improvements in quality and output; development opportunities within the project team; increase in an organisation's competitive edge; opportunities to expand services; more flexibility; improved risk assessment.

The learner will:

2. Understand how to set up projects

Assessment criteria

The learner can:

- 2.1 Explain the **considerations** when reviewing project proposals
- 2.2 Explain how to set clear goals for projects
- 2.3 Analyse project resource requirements
- 2.4 Explain **how roles and responsibilities are allocated** within project teams
- 2.5 Identify project communication needs
- 2.6 Assess **possible risks** to successful completion of projects
- 2.7 Explain how to **mitigate** for possible risks.

Range

Considerations

Financial viability of the project; time; legal; resource; budget; constraints; dependencies; confidentiality eg restrictions in relation to the Data Protection Act, who has access to data and project documentation.

How to set clear goals

Identify stakeholders; identify needs; use SMART principles; record goals in project plans.

Resource requirements

Project requirements against goals; time constraints; budget; human resources; training needs; communication needs; IT requirements.

How roles and responsibilities are allocated

Use of experts from different areas of the organisation; use of key stakeholders; identify training needs; meeting schedules; timing of reports.

Communication needs

Formal/informal communication; identifying who requires communication eg stakeholders, management, team members.

Possible risks

Safety issues; optimistic time and cost estimates; unexpected budget costs; unclear roles and responsibilities; stakeholder needs not sought; changing requirements after the start of the project; new requirements; poor communication; lack of commitment.

Mitigate

Health and safety training; regular project review meetings; appropriate communication; training and monitoring.

The learner will:

3. Be able to use management tools to maintain, control and monitor projects

Assessment criteria

The learner can:

- 3.1 Describe different **management tools** for monitoring and control of projects
- 3.2 Justify the use of management tools for monitoring and controlling projects
- 3.3 Use management tools to **monitor** projects

Range

Management tools

Progress reports; budget monitoring reports; GANTT charts; Critical Path Analysis; use of relevant and current project software packages.

Monitor

Updating task status; re-scheduling uncompleted tasks; updating project elements.

Learning outcome

The learner will:

4. Be able to review projects at all stages

Assessment criteria

The learner can:

- 4.1 Explain reasons for reviewing projects after completion
- 4.2 Review projects against original proposals

Range

Reasons

Improve future projects; enables ability to learn from experience; identify key resources for future projects; ensures comparison against achievements to original objectives; highlights any issues eg health and safety, problems, training needs, shortages in terms of resources, increases in costs, allows for the ability to revise and update plans, enables completion of an end of project report.

Unit 423 Managing information and knowledge

UAN:	F/602/1797
Level:	4
Credit value:	15
GLH:	60
Relationship to NOS:	This unit is linked to the Business and Administration NOS, BAD112.
Endorsement by a sector or regulatory body:	This unit is endorsed by the Council for Administration.
Aim:	The purpose of this unit is to enable learners to develop an understanding of the relationship between data, information and knowledge, and the contribution, information and knowledge management makes to the success of organisations. Learners who aspire to positions in information and knowledge management will develop the fundamental knowledge, understanding and skills necessary for such job roles.

Lear	rning outcome
The	learner will:
1	Inderstand the need to manage information and knowledge within organisations
Ass	essment criteria
The	learner can:
1.1	Outline the main features of information management
1.2	Explain the relationship between data, information and knowledge
1.3	Analyse the concept of knowledge management
1.4	Analyse the benefits information and knowledge management brings to organisations
Ran	ge

Features of information management

Database management; compiling reports; success/security.

Relationship between data, information and knowledge Data: one off event

Information: when data is added to data Knowledge: the ability to use the information.

Knowledge Management

Gather; organise; share; analyse.

Benefits

Efficient processing of data; positive impact on organisation goals; improved productivity; improved customer service.

Learning outcome

The learner will:

2. Understand the role of ICT in managing information and knowledge

Assessment criteria

The learner can:

- 2.1 Outline the **types** and nature of organisational information systems
- 2.2 Explain how information and communication technology (ICT) affects **organisational communication**
- 2.3 Evaluate how ICT can be used to **disseminate knowledge** throughout the organisation

Range

Types

Accounting; financial; human resources; marketing; operational.

Organisational communication

Formal and informal, Computer Misuse Act.

Disseminate knowledge

Through written reports, networks, intranet, emails etc, to wide audience.

Learning outcome

The learner will:

3. Understand the links between knowledge management strategy and competitive advantage

Assessment criteria

The learner can:

- 3.1 Explain the **role** and importance of knowledge for organisations
- 3.2 Justify the **need for maintaining a learning culture** in a changing environment
- 3.3 Demonstrate how **knowledge management strategies** and processes support and facilitate organisational learning
- 3.4 Evaluate the relationship between **organisational learning** and **competitive advantage**

Range

Role

Organisational culture; organisational knowledge; individual knowledge; wider cultural context.

Need for maintaining a learning culture

Improved performance; increased customer satisfaction; committed workforce; ability to deal with change.

Knowledge management strategies

In relation to culture; internal/external networks; support/change structures.

Organisational learning

Peter Senge model of organisational learning.

Competitive advantage

Increases profits; less resistance to change.

Unit 425 Principles of electrical and electronic engineering

UAN:	K/504/4450
Level:	4
Credit value:	15
GLH:	60
Aim:	The purpose of this unit is to enable learners to develop an understanding of the fundamental principles of electrical and electronic engineering.

Learning outcome		
The learner will: 1. Understand the theory of electromagnetic circuits		
Assessment criteria		
The	learner can:	
1.1	Explain the occurrence of properties in relation to the behaviour of magnetic materials undergoing cyclic magnetisation	
1.2	Explain the relationship between the shapes of hysteresis loops of materials and their application in magnetic and electromagnetic circuits	

Range

Properties

Coercivity; remanance; saturation; permeability

Materials

Magnetically soft and magnetically hard

Learning outcome

The learner will:

2. Be able to solve design problems using electromagnetic circuit theory

Assessment criteria

The learner can:

- 2.1 Assess the reluctance of magnetic materials
- 2.2 Calculate the inductance of magnetic circuits using applied **variables**
- 2.3 Solve **problems** relating to electromagnetic circuits

Range

Variables

m.m.f, circuit dimensions and permeability

Problems

Magnetic field strength; flux density; total flux

Learning outcome

The learner will:

3. Be able to apply electrical theorems to solve d.c. network problems

Assessment criteria

The learner can:

- 3.1 Explain methods of resolving d.c. network problems using electrical **theorems**
- 3.2 Use electrical **theorems** to solve problems involving d.c networks

Range

Theorems

Kirchoff's current and voltage laws; Thévenins theorem and Norton's theorem

Learning outcome

The learner will:

4. Be able to use complex notation theory in the analysis of singlephase a.c. networks

Assessment criteria

The learner can:

- 4.1 Explain the **representation** of series R, L and C circuits
- 4.2 Evaluate complex variables in **operations** using complex conjugates
- 4.3 Convert electrical values between polar and rectangular form
- 4.4 Evaluate real and apparent power using relationships

Range

Representation

By complex impedance and complex admittance

Operations

Addition; subtraction; multiplication; division

Relationships

P=Re[VI*] and Q=Im[VI*]

The learner will:

5. Understand how to analyse RLC circuits

Assessment criteria

The learner can:

- 5.1 Explain how to represent differing **types** of R, L and C circuits using phasor diagrams
- 5.2 Explain how the conditions of resonance for **RLC circuits** are derived

Range

Types

Series; parallel; series-parallel

RLC circuits

Series; parallel

Learning outcome

The learner will:

6. Be able to analyse RLC circuits

Assessment criteria

The learner can:

- 6.1 Produce plots of the frequency responses of tuned **RLC circuits**
- 6.2 Solve problems of **resonance** in **RLC circuits**
- 6.3 Solve problems relating to power-factor improvement

Range

Resonance

Quality factor; bandwidth; dynamic impedance

RLC circuits

Series; parallel; series-parallel

Learning outcome

The learner will:

7. Understand how to analyse electrical systems when modelled as two-port networks

Assessment criteria

The learner can:

- 7.1 Explain the **parameters** used in two-port models
- 7.2 Explain the deriving of input and output equations for **parameter** models

Range

Parameters

Z (impedance model); Y (admittance model) and h (hybrid model); elementary matrix algebra

Learning outcome

The learner will:

8. Be able to analyse electrical systems when modelled as two-port networks

Assessment criteria

The learner can:

- 8.1 Convert circuit values using **parameters** from different models
- 8.2 Solve problems involving gain of two-port model networks

Range

Parameters

Z (impedance model); Y (admittance model) and h (hybrid model); elementary matrix algebra

Gain

Low frequency; mid-band; high frequency

Learning outcome

The learner will:

9. Be able to analyse three-phase circuits

Assessment criteria

The learner can:

- 9.1 Illustrate three-phase systems using phasor diagrams
- 9.2 Solve **problems** in balanced three-phase loads
- 9.3 Analyse methods of three-phase power measurement for different **systems**

Range

Problems

Involving line and phase values; power and power-factor correction

Systems

Balanced; unbalanced; star; delta

Learning outcome

The learner will:

10. Be able to solve the transient response of first-order circuits

Assessment criteria

The learner can:

- 10.1 Produce graphs of growth and decay of transient **components** in **circuits**
- 10.2 Solve problems relating to **time** and steady state values of **circuits**

Range

Components

Voltages and currents.

Circuits

RL and RC

Time

Time constant; rise-time and fall-time

Circuits

RL and RC

Unit 426 Data communication and networks

UAN:	Y/504/4458
Level:	4
Credit value:	15
GLH:	54
Aim:	The purpose of this unit is to enable learners to develop an understanding of data communication and networks used for engineering operations.

Lear	Learning outcome		
The l	earner will:		
1. Understand data communication media, connectors and methods of data transmission			
Assessment criteria			
The l	earner can:		
1.1	Explain different types of data transmission media		
1.2	Explain attenuation and interference with different transmission media		
1.3	Explain the applications of different cable connectors		
1.4	Compare analogue and digital signals for data transmission		
1.5	Explain the effects of bandwidth limitations for data transmission		
1.6	Describe modulation techniques used for data transmission		
1.7	Explain simplex, duplex and half-duplex communications		
1.8	Assess different methods and techniques of data transmission		
1.9	Explain how data channels may be shared using different		
	methods of multiplexing		
1.10	Describe network applications and services		

Range

Types

Coaxial cable; twisted pair (shielded and unshielded); optical fibre; radio waves

Cable connectors

BNC (plugs, sockets, 'T' connectors, terminators); RJ45 connectors

Effects

Interference and data rates

Modulation techniques

Amplitude; frequency; phase

Methods

Serial; parallel; baseband and broadband

Techniques

Asynchronous and synchronous

Methods

Time Division Multiplexing (TDM); Frequency Division Multiplexing (FDM)

Applications and services

Electronic mail (e-mail) for electronic communication, browser for access to internet and Worldwide Wide Web (WWW), scheduling for group meetings and appointments, File Transfer Protocol (FTP) for the transfer of files, Hypertext Transfer Protocol (http) for retrieval of world wide web pages (WWW)

Learning outcome

The learner will:

2. Understand how to make direct connections between devices

Assessment criteria

The learner can:

- 2.1 Explain different **codes** used for data transmission
- 2.2 Describe standard character sets for data representation
- 2.3 Describe **standards** used for data transmission
- 2.4 Explain RS232 connection formats
- 2.5 Explain the **protocols** used between **connections**
- 2.6 Explain the function of modems used in connections
- 2.7 Describe the working principles of the Integrated Services Digital Network (ISDN)

Range

Codes

Character; control signal

Character sets

ASCII; EBCDIC

Standards

RS232; V24; X21

Connection formats

9-way and 25-way D type

Protocols

XON; XOFF; CTS; RTS

Connections

DTE to DTE; DTE to DCTE

Connections

DTE to DTE; DTE to PSTN

Learning outcome

The learner will:

3. Be able to safely establish connections between similar devices for data transfer

Assessment criteria

The learner can:

- 3.1 Use safe working practices on mains-powered equipment
- 3.2 Use cables and connectors to provide a serial port direction **connection**
- 3.3 Apply communication software protocol to allow file transfer

Range

Safe working practices

Safe isolation methods; appropriate to national standards; use of antistatic equipment

Connection

DTE to DTE

Communication software protocol

Number of data bits; parity; number of start bits; number of stop bits; baud rate

Learning outcome

The learner will:

4. Understand communication network concepts and components

Assessment criteria

The learner can:

- 4.1 Explain the advantages and disadvantages of networking devices
- 4.2 Evaluate attributes of local area networks (LAN) and wide area networks (WAN)
- 4.3 Explain the purpose and **types of servers** available on a network
- 4.4 Evaluate types of **network topologies**
- 4.5 Explain **methods** used for accessing a data transmission network
- 4.6 Explain types of data error detection methods
- 4.7 Describe the operational principles of **main hardware** components in networks

- 4.8 Explain the functions of network components
- 4.9 Evaluate different **protocols** used in networks
- 4.10 Explain the relevance of using **international standards** for data transmission

Range

Types or servers

File; client/server; web; mail

Network topologies

Bus; ring; mesh; star

Methods

Token passing and CSMA/CD data control flow

Types

Parity checking; checksum; CRC

Main hardware

Server; PCs; terminals; peripherals

Network components

Hubs; repeaters; bridges; routers; gateways

Protocols

TCP/IP; NetBEUI; IPX/SPX

International standards

CCITT; ISO; ANSI; IEEE; EIA

Learning outcome

The learner will:

5. Be able to install a functioning data network interface card in peer to peer networks

Assessment criteria

The learner can:

- 5.1 Describe the operation of peer to peer networks
- 5.2 Explain the purpose of different types of network interface cards (NIC)
- 5.3 Describe security issues of externally connected networks
- 5.4 Explain **problems** that may prevent networks from operating correctly
- 5.5 Install appropriate network interface card
- 5.6 Use software and hardware resources to connect devices
- 5.7 Explain the purpose of software drivers for network hardware operation
- 5.8 Install network software drivers using appropriate operating systems
- 5.9 Create **user access** rights to resources on devices

Problems

Loose socket connection; break in cable; incompatible protocols installed

Installation

IRQ; port address; memory address

Hardware resources

Cables; cable connectors; components

User access

Client logon and directory/folder facilities

Learning outcome

The learner will:

6. Be able to commission peer to peer network operation

Assessment criteria

The learner can:

6.1 Produce **network implementation documents**

6.2 Evaluate network installation and configuration

Range

Network implementation document

Configuration; protocol(s) used; type of network interface cards used; whether passwords are required for shared resources and specification of which resources are shared

Installation and configuration

Testing of functionality; benefit to users; security of data; speed of data transfer for files and printed output and any problems which may have occurred

Learning outcome

The learner will:

7. Understand data network services maintenance and management

Assessment criteria

- 7.1 Explain tasks involved in the management of networks
- 7.2 Explain the process for **managing** individual and group accounts on networks
- 7.3 Evaluate **network security techniques** to prevent unauthorised access to data
- 7.4 Assess the importance of anti-virus software

Tasks

System configuration; management of users; management of workstations; activity log reporting; error log reporting; traffic analysis; performance analysis; regular backup of data

Managing

Creating; disabling; deleting

Network security techniques

Physical access; user identification code; password; access rights; firewall; proxy server; encryption

Unit 427 Understand uses and operation of electrical machines in engineering operations

UAN:	Y/504/4461
Level:	4
Credit value:	10
GLH:	50
Aim:	The purpose of this unit is to enable learners to develop an understanding of the uses and operations of electrical machines in engineering operations.

Learning	outcome
Louining	outcome

The learner will:

1. Understand the principles and operation of d.c. machines

Assessment criteria

The learner can:

- 1.1 Describe components and characteristics of d.c. machines
- 1.2 Explain the effects of armature reaction
- 1.3 Describe **types** of winding arrangements and their effects on operation
- 1.4 Solve problems involving d.c. machine parameters

Range

Types

Lap and wave

Learning outcome

The learner will:

2. Understand the principles and operation of three-phase induction motors

Assessment criteria

- 2.1 Evaluate features of different **types** of motors
- 2.2 Outline parameters of induction motors
- 2.3 Describe the load characteristic of three-phase induction motors
- 2.4 Analyse the relationship between the speed of rotation of a 3phase rotating field and the slip frequency of an induction motor
- 2.5 Illustrate the equivalent circuit of three phase induction motors

- 2.6 Assess types of induction motor starter systems
- 2.7 Interpret **standards** of motor identification letters relating to types of enclosure and mounting
- 2.8 Solve problems involving induction motor parameters

Types of motors

Wound rotor and squirrel cage induction

Types of induction motor starter systems

Direct on-line; Star-delta; Auto-transformer and Rotor resistance

Standards

BS4999 and ISO equivalent

Learning outcome

The learner will:

3. Understand the principles and operation of synchronous induction motors

Assessment criteria

The learner can:

- 3.1 Analyse the operation of synchronous motors for different rotor **types**
- 3.2 Explain the production of torque in synchronous motors using phasor diagrams
- 3.3 Describe the wound rotor synchronous induction motor
- 3.4 Illustrate the equivalent circuit of a synchronous motor
- 3.5 Solve problems involving synchronous induction motor **parameters**

Range

Types

Salient pole; cylindrical

Parameters

Power input; power output; efficiency and power factor correction

Learning outcome

The learner will:

4. Understand the principles and operation of power transformers

Assessment criteria

The learner can:

- 4.1 Outline standards for power transformer terminal markings
- 4.2 Assess the functions of transformer winding vector groups
- 4.3 Evaluate transformer types according to properties
- 4.4 Evaluate the use of centre tapped reactor tapchanging
- 4.5 Explain faults that can occur with power transformers

- 4.6 Explain the method of 3-phase power transformer earth fault detection using current transformers
- 4.7 Explain the Buchholz Relay system of transformer protection
- 4.8 Calculate on-load transformer heating and cooling times
- 4.9 Solve problems involving transformer parameters

Standards

BS171; ISO equivalent

Markings

HV; LV; potential; phase shift and winding method

Groups

1(0°), 2(180°), 3(-30°) and 4(+30°)

Properties

Winding type; low voltage displacement; high voltage displacement and methods of cooling

Unit 428 Using electrical protection techniques for engineering operations

UAN:	D/504/4462
Level:	4
Credit value:	10
GLH:	45
Aim:	The purpose of this unit is to enable learners to develop an understanding of how to use electrical protection techniques for engineering operations.

Learning outcome

The learner will:

1. Be able to solve cable fault location problems using the bridge method

Assessment criteria

The learner can:

- 1.1 Explain the bridge method of cable fault location
- 1.2 Use algebraic expressions for cable fault location
- 1.3 Solve cable fault location problems

Learning outcome

The learner will:

2. Understand how to simplify power systems into one-line impedance circuits

Assessment criteria

The learner can:

- 2.1 Explain fault level, base MVA and per unit impedance
- 2.2 Explain the construction of supply system one-line impedance diagrams
- 2.3 Evaluate electrical supply system **parameters** to simplify electrical supply system networks to one-line impedance diagrams

Range

Parameters

Sbase; Vbase; Zbase

Learning outcome

The learner will:

3. Understand current transformer application in electrical system protection

Assessment criteria

The learner can:

- 3.1 Explain current transformer principles of operation
- 3.2 Evaluate current transformer parameters
- 3.3 Evaluate classes of current transformer for particular applications

Range

Parameters

Magnetic field strength; flux density; total flux; reluctance

Learning outcome

The learner will:

4. Be able to specify electrical protection relays for electrical systems

Assessment criteria

The learner can:

- 4.1 Describe relay **time** relationships
- 4.2 Evaluate advantages and disadvantages of unit differential protection
- 4.3 Solve relay **problems**

Range

Time

Desired operating time; time setting multiplier and the British Standard IDMT characteristic time for full travel

Problems

IDMT relay setting from maximum load current for different system voltages; fault current as a multiple of relay setting; time for full travel of an IDMT relay from the BS characteristic (ISO equivalent); desired operating time of an IDMT relay; TMS of an IDMT relay and setting times of graded relays.

Learning outcome

The learner will:

5. Understand the principles of earthing and circuit protection of electrical plant

Assessment criteria

- 5.1 Explain earthing system **arrangements**
- 5.2 Evaluate earth fault current in electrical circuits
- 5.3 Describe circuit **protection** against various fault types

Arrangements

TN; TT; IT

Protection

Overload; short-circuit; earth fault

Unit 429 Electrical services and installation

UAN:	R/504/4460
Level:	4
Credit value:	10
GLH:	41
Aim:	The purpose of this unit is to enable learners to develop an understanding of electrical services and installation. Learners will look at regulations that apply, materials and equipment used and types of earthing systems and circuits.
	On completion of this unit learners will be able to design aspects of low voltage electrical installations.

Learning outcome

The learner will:

1. Understand the regulations applicable to electrical installations and services

Assessment criteria

The learner can:

- 1.1 Outline **regulations** for safe electrical installation practice and equipment
- 1.2 Interpret International Code of Protection ratings for electrical equipment
- 1.3 Explain **international standards** for the use of electrical equipment in hazardous areas

Range

Regulations

National (BS7671); European and international (IEC)

International standards

CENELEC; ATEX; IEC

Learning outcome

The learner will:

2. Understand materials and equipment used in electrical services and installations

Assessment criteria

The learner can:

- 2.1 Define types of **wiring systems** by their **properties**
- 2.2 Evaluate types of **electrical equipment** according to installation method and location
- 2.3 Evaluate types of **wiring enclosure** according to installation method and location
- 2.4 Evaluate electrical switchgear in respect of **purpose** and operation.
- 2.5 Evaluate **circuit protective devices** according to the type of fault protection required

Range

Wiring systems

Thermosetting insulated cables including flexes; single and multicore thermoplastic (PVC) and thermosetting insulated cables; PVC/PVC flat profile cable; MICC (with and without PVC sheath); SWA cables (PILC, XLPE, PVC); armoured/braided flexible cables and cords; data cables; fibre optic cables and fire resistant cables

Properties

Type of construction; voltage rating; material of construction; size and compatibility for installation method/location

Electrical equipment

Isolators and switches; socket-outlets; distribution-boards; consumer units; earthing fault and over current protective devices; luminaries; control equipment; data socket outlets; auxiliary equipment (eg heating/water system components)

Wiring enclosure

Conduit (PVC and metallic); trunking (PVC and metallic); cable tray; cable basket; ladder systems; ducting; modular wiring systems and Busbar systems/Powertrack

Purpose

Protection; isolation; switching

Circuit protective devices

MCB; RCBO; RCD; Fuses (BS1361, BS3036 and BS88 or national equivalent)

Learning outcome

The learner will:

3. Understand earthing systems and circuits

Assessment criteria

The learner can:

- 3.1 Define types of permitted **earthing systems**
- 3.2 Analyse electrical circuit earth fault loop **parameters**
- 3.3 Explain the operation of residual current devices (RCDs)
- 3.4 Analyse earth electrode resistance and soil resistivity using **standard** techniques
- 3.5 Evaluate earthing installation testing methods according to **standards**

Range

Earthing systems

TN-C; TN-S; TN-C-S; TT; IT

Parameters

Earth fault loop impedance; external loop impedance; fault current; protective conductor size; circuit protective devices

Standard

IET GN3 methodology (or international equivalent)

Standards

National (BS7671); International

Learning outcome

The learner will:

4. Understand the requirements of special electrical installations or locations

Assessment criteria

The learner can:

- 4.1 Outline prescribed **locations** or **installations** with particular electrical installation requirements
- 4.2 Analyse electrical installation requirements in relation to special **locations** or **installations**

Range

Locations or installations

As per BS7671 – Part 7 definition; or international equivalent

Learning outcome

The learner will:

5. Understand the requirements of electrical equipment for protection against other hazards

Assessment criteria

- 5.1 Describe hazards associated with static charge
- 5.2 Evaluate methods of minimising hazards associated with high resistivity hydrocarbons and other inflammable sources
- 5.3 Evaluate the use of Zener diode barrier circuits
- 5.4 Assess the suitability of different types of fire system installations

- 5.5 Evaluate electrical equipment for use in hazardous areas according to regulations
- 5.6 Evaluate international regulations to establish equivalence to national classifications and equipment classes
- 5.7 Assess types of hazardous area electrical equipment appropriate to various industrial and commercial locations
- 5.8 Analyse certification authority requirements for electrical equipment for use in hazardous areas

Learning outcome

The learner will:

6. Be able to design aspects of low voltage electrical installations

Assessment criteria

The learner can:

- 6.1 Explain the relationship between electrical installation design and **statutory/non-statutory regulations**
- 6.2 Describe considerations for designing **final circuits**
- 6.3 Explain the **requirements** for the assessment of general characteristics of electrical installations
- 6.4 Use design calculations relevant to electrical installation design **parameters**
- 6.5 Assess how the use of **associated protective systems** affects the design of electrical installations

Range

Statutory/non-statutory regulations

BS 7671; IET Guidance Notes; Electricity at Work Regulations; Electricity Safety Quality and Continuity Regulations; The Building Regulations (England & Wales) (Scotland) and Construction (Design Management) Regulations; international equivalence

Final circuits

Ring final; radial; powertrack and bus bar trunking; circuit loading.

Requirements

Purpose of supplies and structure; maximum demand and diversity; arrangements of live conductors and earthing arrangements; supplies; division of installation; compatibility; maintainability and continuity of service

Parameters

Cable sizes; protective device ratings; cable grouping; input power; line and phase current loads; earth fault loop impedance; diversity; prospective fault current

Associated protective systems

Lightning protection systems using zones of protection; lightning protection systems component parts; methods of protection against corrosion and erosion; manual fire detection systems; automatic fire detection systems; standby lighting systems; self-contained emergency lighting systems; centrally supplied emergency lighting

systems; generator systems for alternative supplies; UPS systems for alternative supplies

Unit 430 Electrical supply and distribution

UAN:	T/504/4466	
Level:	4	
Credit value:	10	
GLH:	54	
Aim:	The purpose of this unit is to enable learners to develop an understanding of electrical supply and distribution.	

Learning outcome
The learner will:
 Understand components and economic factors of electrical transmission and distribution systems
Assessment criteria
The learner can:
1.1 Explain the functions of system components
1.2 Explain the operation of overcurrent protection equipment on contactors and circuit breakers
1.3 Evaluate advantages and disadvantages of network systems for use in engineering
1.4 Evaluate circuit breaker operations relative to fault positions
1.5 Assess advantages of IDMT and Directional Overcurrent relays for use in engineering
1.6 Analyse costs involved with electricity supply systems for selection of use
Range

Components

Isolating switches; contactors; fuses and circuit breakers

Network systems

Radial; parallel and ring

Costs

Fixed and variable (tariffs – using system values: load, demand, maximum demand, diversity factor, load factor and power factor)

Learning outcome

The learner will:

2. Be able to analyse the characteristics of three-phase power transformers in parallel operation

Assessment criteria

The learner can:

- 2.1 Explain the conditions for transformers to successfully and safely operate in parallel
- 2.2 Explain the operation of voltage control of transmission lines using tap changing transformers
- 2.3 Assess the kVA **load** of transformers operating in parallel using impedance based schematics
- 2.4 Assess transformer impedances connected in parallel referred to primary or secondary windings
- 2.5 Assess the **properties** of **system configurations** of transformers connected in parallel

Range

Load

Product of total load being shared and the ratio of transformer impedances

Properties

Load distribution; current circulation; phase regulation; in groupings; (using phasor diagrams where appropriate)

System configurations

Involving different complex impedances; supplying different loads over short transmission lines and connected in various configurations

Learning outcome

The learner will:

3. Be able to apply short transmission line theory for engineering configurations

Assessment criteria

- 3.1 Assess the configuration of **supply systems** using equivalent circuits
- 3.2 Assess the configuration of **systems** using schematic diagrams and complex reactances
- 3.3 Illustrate series **equivalent circuits** representing transmission lines
- 3.4 Evaluate the **performance** of short line receiving end line systems
- 3.5 Assess short line system **parameters** using complex notation from given data

Supply systems

Consisting of generators; transformers; motors; lines; loads

Systems

Radial supply; parallel; ring

Equivalent circuits (in the form of phasor diagrams)

Using load current as a reference and using the receiving end voltage as the reference

Performance

For different power factors, from given data, for control of real and reactive power by transmission angle and sending voltage and for demonstrating the effects of variation in real power and power factor on the sending end voltage

Parameters

The sending end voltage; line voltage drop; load angle

Learning outcome

The learner will:

4. Understand operating characteristics of three-phase generators on infinite busbars

Assessment criteria

The learner can:

- 4.1 Explain the relationships between generator **parameters**
- 4.2 Assess the operation of synchronous machines using equivalent circuits
- 4.3 Assess the relationship between generator parameters
- 4.4 Illustrate generator load diagrams using given data
- 4.5 Evaluate generator load diagrams to measure operational performance and **limits**
- 4.6 Assess generator performance limitations with respect to **operating characteristics**

Range

Parameters

Stator phase voltage; stator phase current; generated voltage and synchronous reactance and impedance

Parameters

Stator phase voltage; stator phase current; generated voltage; load angle; stator voltage drop; power factor constant power; constant VAr loci

Given data

Stator phase voltage; stator phase current; synchronous impedance; short circuit ratio; power; reactive power; load angle; power factor

Limits

Prime mover limit (MW or turbine power limit); theoretical and practical stability limits; excitation; stator heat limits

Operating characteristics

Real power output; reactive power output; the p.u. excitation; operating power factor and apparent power output; short circuit ratio (SCR)

Learning outcome

The learner will:

5. Be able to solve fault levels on electrical supply system configurations

Assessment criteria

The learner can:

- 5.1 Explain **terms** used in electrical supply system configurations
- 5.2 Illustrate **supply systems** using one-line diagrams
- 5.3 Describe **principles** used in high voltage circuit breakers
- 5.4 Assess the construction and operation of **high voltage protection devices** for use in different applications
- 5.5 Assess the operation of circuit breakers using equivalent circuits
- 5.6 Evaluate **techniques** for reducing fault levels to specified values
- 5.7 Assess the magnitude of fault levels at various points using system **parameters**
- 5.8 Evaluate the effects of system switching transients on electrical supply system operation
- 5.9 Solve system fault level problems involving star/delta circuit transformations

Range

Terms

Fault level; per unit impedance; grid in-feed; source fault VA

Supply systems

Units represented as p.u. impedance

Principles

Arc suppression; control; interruption

High voltage protection devices

Plain break oil circuit breakers; air blast circuit breakers; vacuum interrupters; sulphur hexafluoride circuit breakers; HRC liquid and HRC expulsion fuses and high voltage fuses

Techniques

In accordance to industry standards (UK and International)

Parameters

Circuit p.u. impedance; base VA and impedance circuit reduction

Learning outcome

The learner will:

6. Understand protection systems used in electrical supply systems

Assessment criteria

The learner can:

- 6.1 Explain elements used in overcurrent protection systems
- 6.2 Explain the operation of supply system **protection systems**
- 6.3 Explain over-voltage protection **methods**
- 6.4 Assess the operation of time setting multipliers and plug setting multipliers for **IDMT relays** in electrical supply systems

Range

Protection systems

Inverse definite minimum time (IDMT) relays; supply system unit circulating current differential protection schemes (as applied to a large generator and to protect a star/delta transformer)

Methods

 $\ensuremath{\mathsf{Overhead}}$ earth wires on EHV lines; surge diverters; non-linear surge diverters

IDMT relays

With reference to BS142 IDMT characteristic curve and to give the required discrimination in radial feeder circuits with various load take off points

Unit 431 Testing and measurement of electronic and electrical systems

UAN:	M/504/4465
Level:	4
Credit value:	15
GLH:	66
Aim:	The purpose of this unit is to enable learners to develop an understanding of testing and measurements of electrical and electronic systems.

Learning outcome

The learner will:

1. Understand the selection of equipment used to measure electrical and electronic values

Assessment criteria

The learner can:

- 1.1 Explain the operation of **test equipment**
- 1.2 Describe types of signal **transmission systems** used for measurement
- 1.3 Evaluate the **selection** of test equipment used to measure differing **values**

Range

Test equipment

Explain with the aid of block diagrams as appropriate: oscilloscopes; meters; signal generators; counters; logic analysers; spectrum analysers; low resistance ohmmeters; insulation resistance testers; voltage indicating devices; earth fault loop impendence testers; prospective fault current testers; RCD testers; earth electrode testers and phase rotation meters

Transmission systems

Coaxial; twisted pair; flat cable; single cable; clamp; fibre-optic; attenuation; phase change and frequency response; noise and noise reduction where appropriate; accounting for; response of the systems; transfer function; impulse response; frequency response and dynamic range

Selection

The correct equipment to measure signals based on; signal characteristics (continuous signals, discrete signals, frequency and

period, peak, average; effective value, phase shift, amplitude, attenuated. Magnitude, peak to peak, time domain, frequency Domain, Fourier series of signals), actual or emulated, transmission system, environment, cost, availability, accuracy and required outcome.

Values

Electronic and low voltage electrical

Learning outcome

The learner will:

2. Be able to apply the principles and techniques employed in electrical and electronic measurement

Assessment criteria

The learner can:

- 2.1 Measure differing signal characteristics
- 2.2 Assess measured values for appropriateness of use
- 2.3 Use **methods** and **techniques** to interpret measurements taken

Range

Signal characteristics

Continuous signals; discrete signals; frequency and period; peak; average; effective value; phase shift; amplitude; peak to peak; time domain; frequency domain; Fourier series of signals

Appropriateness of use

Errors; accuracy; significant digits; rounding numbers; statistical analysis; error rates. Including potential solutions to problems relating to values measured

Methods

Graphs (linear, polar and logarithmic – including line of best fit), tables and use of spreadsheets

Techniques

Graphical analytical techniques to illustrate outcomes including: system/component performance, fault diagnosis, compliance to design/operational parameters

Learning outcome

The learner will:

3. Be able to apply the principles and techniques used in data acquisition systems

Assessment criteria

The learner can:

- 3.1 Explain the **internal architecture** and operation of typical data acquisition systems
- 3.2 Assess the performance of items under **test** using data acquisition systems.

Internal architecture

Using block diagrams as appropriate: input section (eg transducers), signal conditioning and multiplexer, sampling methods, output filtering and corrections (sin x/x), errors, A/D conversion, CPU and I/O devices, data recording methods (eg graphic and magnetic), operation of bus structures and control of data lines.

Test

As appropriate to range included within 3.1

Learning outcome

The learner will:

4. Understand procedures for the inspection of electrical systems

Assessment criteria

The learner can:

- 4.1 Outline the **regulatory requirements** for inspection, testing and commissioning of **electrical systems**
- 4.2 Outline the **procedures** to prepare for inspection of electrical systems
- 4.3 Explain how **human senses** could be used during the **inspection** process
- 4.4 Assess items that would form part of inspection checklists for **electrical systems**

Range

Regulatory requirements

UK current or international equivalents of: IET wiring regulations and IET Guidance Note 3 Electricity at Work Regulations 1989

Electrical systems

Low voltage - new, existing, three phase, single phase

Procedures

Contact with client; arrange isolation timings; range and limitations of inspection; gather information (client, test results, certificates); risk assessment; prepare method statements

Human senses

Sight, touch, hearing, smell

Inspection

Initial installation, periodic review, minor works

Electrical systems

Low voltage - new, existing, three phase, single phase

Learning outcome

The learner will:

5. Understand procedures used for testing of electrical systems

Assessment criteria

The learner can:

- 5.1 Explain the purpose and procedures for conducting **regulatory tests** on **electrical systems**
- 5.2 Explain the **preparation requirements** for testing
- 5.3 Explain the **implications** of test values that are non-compliant with regulatory standards
- 5.4 Explain the requirements for the safe and correct **use** of **instruments** to be utilised for testing

Range

Regulatory tests

Verify continuity of conductors (circuit protective, earthing, bonding, ring final); insulation resistance; polarity; earth electrode resistance; earth fault loop impedance; prospective fault current; correct operation of RCDs; functional testing; phase rotation (to include explanation of sequence of tests)

Electrical systems

Low voltage - new, existing, three phase, single phase

Preparation requirements

Risk assessment; safe system of work; precautions to be taken when carrying out tests; safe isolation; instrumentation fit for purpose; communication with clients; range and limitations

Implications

Shock; fire; burns; injury

Use

Correct scale/settings of the instrument; safety checks; functioning correctly; calibrated in accordance with regulatory requirements

Instruments

In accordance with UK current or international equivalents of: HSE guidance document GS 38; low resistance ohmmeter; insulation resistance tester; voltage and current indicating devices; earth fault loop impendence tester; prospective fault current tester; RCD tester; earth electrode tester; phase rotation meter

Learning outcome

The learner will:

6. Understand the requirements for documenting installed electrical systems

Assessment criteria

The learner can:

6.1 Explain the purpose of **certification** documentation

- 6.2 Explain the responsibilities of **personnel** involved in the completion of certification **documentation**
- 6.3 Explain the **regulatory requirements** for documenting electrical systems

Certification

Electrical installation certificate; electrical installation condition report; minor works certificate; schedule of inspections; schedule of test results

Personnel

Designer; installer; tester

Documentation

Regulatory requirements; UK current or international equivalents of: IET wiring regulations; IET Guidance Note 3; recording; retention

Regulatory requirements

UK current or international equivalents of: IET wiring regulations; IET Guidance Note 3; recording; retention

Learning outcome

The learner will:

7. Be able to inspect electrical wiring systems

Assessment criteria

The learner can:

- 7.1 Use **safe systems** of work for inspection of electrical systems
- 7.2 Carry out electrical system inspections

Range

Safe systems

Design; apply; document; safe isolation

Inspection

UK current or international equivalents of: IET Wiring Regulations, IET Guidance Note 3, specifications

Learning outcome

The learner will:

8. Be able to test the safety of electrical systems

Assessment criteria

- 8.1 Use **safe systems** of work for testing electrical systems
- 8.2 Carry out **regulatory tests** of electrical systems
- 8.3 Carry out **commissioning** of electrical systems

Safe systems

Design; apply; document; safe isolation

Regulatory tests

Verify continuity of conductors (circuit protective, earthing, bonding, ring final); insulation resistance; polarity; earth electrode resistance; earth fault loop impedance; prospective fault current; correct operation of RCDs; functional testing; phase rotation (to include explanation of sequence of tests)

Commissioning

Functionality; fitness for purpose; safety in accordance with the installation specification and complete documentation (electrical installation certificates, schedules of inspections, schedules of test results)

Unit 432 Programmable logic controllers

UAN:	A/504/4467
Level:	4
Credit value:	10
GLH:	60
Aim:	The purpose of this unit is to enable learners to develop an understanding of programmable controller systems. Learners will understand features, PLC information and communication techniques, programming methods and methods of diagnosing faults in programmable controlled environments. On completion of this unit, learners will be able to create operational programs to drive PLCs in industrial related tasks.

Learning outcome	
The learner will: 1. Understand features of programmable controller systems	
Assessment criteria	
The learner can:	
1.1 Explain the advantages of processor controlled logic systems over relay logic systems	
1.2 Explain the internal architecture of Programmable Logic Controllers (PLCs)	
1.3 Explain the operational characteristics of PLCs	
1.4 Explain the operational requirements for input and output devices used by PLCs	
1.5 Evaluate types of communication link used in programmable logic control systems and controllers	
Range	
Internal architecture	

Input and output units; storage devices; memory; central processor unit (CPU); address bus; data bus; control bus; arithmetic logic unit (ALU); opto-isolators; flags; shift; registers.

Operational characteristics

Scanning; performing logic operations; continuous updating; mass input/output (I/O) copying.

Devices

Mechanical switches; non-mechanical digital sources; transducers; relays.

Types

Twisted pair; coaxial; fibre-optic; networks

Learning outcome

The learner will:

2. Understand PLC information and communication techniques

Assessment criteria

The learner can:

- 2.1 Describe the **forms** of signal interface used by PLCs
- 2.2 Explain the significance of digital resolution
- 2.3 Calculate the resolution of analogue-to-digital converters
- 2.4 Assess the uses of **number systems** in PLCs
- 2.5 Evaluate **network topologies** used by PLCs
- 2.6 Explain the use of logic functions in PLC programming
- 2.7 Explain how to write ladder logic programs using **logic functions**

Range

Forms

Analogue (0-10 v dc, 4-20mA); digital

Resolution

9-bit; 10-bit; 12-bit

Number systems

Decimal; binary; octal; hexadecimal; Binary-Coded Decimal (BCD)

Network topologies

Master to slave; peer to peer; ISO; IEE; MAP

Logic functions

AND; OR; EXCLUSIVE OR; NAND; NOR.

Learning outcome

The learner will:

3. Understand PLC programming methods

Assessment criteria

The learner can:

- 3.1 Explain the relationship between source codes and object codes
- 3.2 Identify methods of using text in PLCs
- 3.3 Assess the operation of PLC software **functions**
- 3.4 Explain the application of different **PLC programming methods**
- 3.5 Evaluate PLC advanced functions

Methods of using text in PLCs

Contact labels; rung labels; programming lists; cross-referencing.

Functions

Contacts; coils; timers; counters; override facilities; flip-flops; shift registers; sequencers.

PLC programming methods

Ladder and logic diagrams; flow charts: statement lists; Boolean algebra; function diagrams; graphical programming languages.

Advanced functions

Less than; greater than; binary to BCD conversion; proportional feedback control.

Learning outcome

The learner will:

4. Be able to create operational programs to drive PLCs in industrial related tasks

Assessment criteria

The learner can:

- 4.1 Design operational PLC programs
- 4.2 Produce operational PLC programs
- 4.3 Test debug PLC programs

Range

Test – Debug

Forcing inputs, forcing outputs; changing data; comparing files (tapes, EPROM, disc); displayed error analysis.

Learning outcome

The learner will:

5. Understand how to diagnose faults in programmable controller environments

Assessment criteria

The learner can:

- 5.1 Describe **methods** of communicating symptoms of faults
- 5.2 Evaluate **types** of fault finding techniques
- 5.3 Assess the relationship between cause and effects of faults
- 5.4 Recommend remedial action for the correction of system faults

Range

Methods

Verbal; written (job sheets, fault reports, production rejects)

Types

Unit 433 Designing analogue circuits

UAN:	A/504/4453
Level:	4
Credit value:	15
GLH:	97
Aim:	The purpose of this unit is to enable learners to develop an understanding of designing analogue circuits. Learners will understand the properties and applications of semiconductor diodes; characteristics, operation and applications of transistors; principles of gain and loss, related to the function of amplifiers in analogue circuits; feedback on amplifier performance.
	On completion of this unit, learners will be able to design simple linear and non-linear operational amplifier circuits; and design and simulate oscillators and filters using the operational-amplifier.

Learning	outcome
----------	---------

The learner will:

1. Understand the properties and applications of semiconductor diodes

Assessment criteria

The learner can:

- 1.1 Describe the electrical properties of a semiconductor diode
- 1.2 Evaluate the characteristics of diode types
- 1.3 Calculate diode **resistance** using the diode equation
- 1.4 Evaluate the use of diodes for different **applications**

Range

Types

Silicon; Germanium; Schottky; Voltage reference.

Resistance

Static; dynamic

Applications

Power rectification; voltage reference; signal processing; light emitting; photosensitive diodes variable capacitance; high voltage.

Learning outcome

The learner will:

2. Understand the characteristics, operation and applications of transistors

Assessment criteria

The learner can:

- 2.1 Explain the operation of a common emitter amplifier using **hybrid parameters**
- 2.2 Analyse Common Emitter transistor characteristics
- 2.3 Analyse the quiescent conditions of transistor amplifiers using different **methods**
- 2.4 Analyse the operation of **field effect transistors** (FET) in terms of their construction
- 2.5 Evaluate the application of transistor amplifier **biasing** against **parameters**
- 2.6 Compare **actual** FET output transfer characteristics against manufactures data to assess component fidelity

Range

Hybrid parameters

hfe; hie; hoe; hre.

Characteristics

Static; dynamic resistance; gain

Methods

Load-line; algebraic

Field effect transistors

JFETs; IGFETs; MOSFET

Biasing

Common emitter; common source; common collector; common drain; common base; common gate.

Parameters

Input impedance; output impedance; gain; stability.

Actual

Static (VDS; VGS; IG; ID; saturation, pinch-off; ohmic region)Dynamic (quiescent values and voltage gain)

Learning outcome

The learner will:

3. Understand the principles of gain and loss, related to the function of amplifiers in analogue circuits

Assessment criteria

The learner can:

- 3.1 Explain the use of the decibel (dB)
- 3.2 Assess the principles of **noise** affecting components and circuits
- 3.3 Evaluate the application of different **classes** of transistor amplifies

Noise

Thermal; cross-talk; Avalanche; burst noise; shot; calculation of signalto noise ratio

Classes

A; B; AB; C

Learning outcome

The learner will:

4. Understand the effects of feedback on amplifier performance

Assessment criteria

The learner can:

- 4.1 Explain **types** of feedback applied to amplifiers
- 4.2 Explain the **terms** associated with amplifier feedback
- 4.3 Analyse the effect of loop gain on **amplifiers**
- 4.4 Explain the effects of **feedback variables** on amplifiers
- 4.5 Assess the relationship between gain and bandwidth on amplifier performance
- 4.6 Assess amplifier stability using Bode plots
- 4.7 Solve loop gain using different measures

Range

Types

Positive; negative; voltage; current

Terms

Open loop; closed loop; stability; distortion; bandwidth.

Amplifiers

When under gain conditions G >>1; G<<1; using classic amplifier feedback equation

Feedback variables

Input and output impedances; series; shunt fed; voltage and current derived; frequency and phase; noise and distortion.

Measures

Decibels, power, voltage, current

Learning outcome

The learner will:

5. Be able to design simple linear and non-linear operational amplifier circuits

Assessment criteria

- 5.1 Explain the **operation** of an ideal operational amplifier
- 5.2 Calculate the transfer functions in feedback circuit under different **conditions**
- 5.3 Carry out **circuit** design calculations, including simulation for specified **applications**

Operation

Including 'virtual earth' concept

Conditions

Linear; non-linear

Circuit

Linear (summing, difference, inverting and non-inverting amplifier circuits); non-linear (precision rectifier, precision voltage regulator).

Application

Level shifter; current-to-voltage converter; voltage-to-current converter

Learning outcome

The learner will:

6. Be able to design and simulate oscillators using the operationalamplifier

Assessment criteria

The learner can:

- 6.1 State the feedback conditions required for an amplifier to give sustained oscillations
- 6.2 Evaluate the operation of different **oscillator** circuits
- 6.3 Carry out oscillator circuit design calculations at given frequencies
- 6.4 Simulate the **design parameters** for oscillator operation

Range

Oscillator

R/C oscillator; phase-shift (R/C) oscillator; Wein bridge oscillator

Design parameters

At given operating frequency

Learning outcome

The learner will:

7. Be able to design and simulate filters using operational-amplifiers

Assessment criteria

The learner can:

- 7.1 Explain the **parameters** of first order filters
- 7.2 Use transfer functions to calculate mid-band gain and Q-factor
- 7.3 Carry out filter design calculations
- 7.4 Simulate the design parameters for **filter** operation

Parameters

Transfer function (from first principles); asymptotic gain-frequency response

Filter

Low-pass, Sallen Key

Learning outcome

The learner will:

8. Understand how to relate the pulse response of an operational amplifier circuit to other circuit parameters

Assessment criteria

The learner can:

- 8.1 Describe pulse response **specifications**
- 8.2 Explain how to relate **small** and **large** signal pulse responses to other **parameters**

Range

Specifications

Rise time; slew rate; overshoot and settling time.

Small parameters

Frequency response in terms of rise time and half-power bandwidth

Large Parameters

Frequency response in terms of slew rate, bandwidth

Learning outcome

The learner will:

9. Understand properties of data converters

Assessment criteria

The learner can:

- 9.1 Explain terms associated with data conversion
- 9.2 Explain the operational properties of analogue to digital **(A to D) converters**

Range

Terms

Conversion time; conversion rate; conversion code; resolution; settling time; quantization error; nominal full-scale output; missing code.

(A to D) converters

'R-2R' ladder; slope; successive approximation and flash

Unit 434 Designing sequential and combinational logic circuits

UAN:	R/504/4457
Level:	4
Credit value:	10
GLH:	66
Aim:	The purpose of this unit is to enable learners to develop an understanding of designing sequential and combinational logic circuits. Learners will understand the function and features of logic device circuits.
	On completion of this unit, learners will be able to design sequential and combinational logic circuits.

Learning outcome

The learner will:

1. Understand the function and features of logic device circuits

Assessment criteria

The learner can:

- 1.1 Evaluate the **function** and **characteristics** of **logic gates**
- 1.2 Evaluate the **operational performance** of different logic **families**

Range

Function

Symbols; truth tables; Boolean algebra.

Characteristics

Fan-in; fan-out; propagation delay; power consumption; operating voltage; calculations; manufacturers' data (data sheets: printed; CD ROM; websites)

Logic gates

AND; OR; NOT; EXOR; NAND; NOR

Operational performance

Speed, power, cost and interface requirements.

Families

Complementary metal oxide – semiconductor (CMOS); transistortransistor logic (TTL)

Learning outcome

The learner will:

2. Be able to design sequential logic circuits

Assessment criteria

The learner can:

- 2.1 Assess types of sequential logic circuit
- 2.2 Outline **standards** of graphical symbols for binary logic elements
- 2.3 Describe the function of sequential **logic devices**
- 2.4 Explain the operation of sequential circuits using **state diagrams**
- 2.5 Produce state-transition tables from **state** diagrams
- 2.6 Evaluate the minimum number of binary elements required to implement a sequential circuit from the number of internal system states
- 2.7 Design minimised circuits using simulation to test against specifications

Range

Types

Synchronous; Asynchronous working

Standards

ANSI/IEE Std 91a-1991; BS EN 60617-12:1999; dependency notation; international equivalent

Logic devices

S-R; J-K; T-type and D-Type bistables (element in terms of a truth table, steering table, Karnaugh map; timing diagram)

State diagrams

Mealy or Moore model

State

Previous; next

Learning outcome

The learner will:

3. Be able to design combinational logic circuits

Assessment criteria

- 3.1 Explain the **operation** of combinational **logic circuits**
- 3.2 Produce minimised Boolean expressions using the **laws** of Boolean algebra

- 3.3 Use **methods** to simplify Boolean functions
- 3.4 Illustrate minimised Boolean expressions using universal gates
- 3.5 Design minimised circuits using simulation to test against specifications

Operation

Using Boolean expressions

Logic circuits

Half adder; full adders; multiplexers and demultiplexers; code converters; comparators, decoders and encoders, parity checkers.

Laws

Commutative; associative; distributive; duality; de Morgan

Methods

Algebraic methods; graphical methods (Karnaugh Mapping and variable entry mapping (VEM) techniques).

Universal gates

NAND; NOR - Illustrate using logic diagrams; or other

Unit 435 Microprocessor based systems

UAN:	L/505/5912
Level:	4
Credit value:	10
GLH:	60
Aim:	The purpose of this unit is to enable learners to develop an understanding of microprocessor based systems. Learners will understand the structure of microprocessor based systems and on completion of this unit will be able to
	 develop software for microprocessor- based systems develop simple control software for programmable interface devices.

Lea	rning outcome
The	learner will:
1. เ	Inderstand the structure of microprocessor based systems
Ass	essment criteria
The	learner can:
1.1	Analyse characteristics of microprocessor based families

- 1.2 Describe the **features** commonly found in a Centre Processing Unit (CPU)
- 1.3 Describe the properties of **memory** components
- 1.4 Explain common **applications** of embedded microprocessor based systems

Range

Characteristics

Speed; cost; input/output (I/O) facilities; instruction set; physical size; bus structure (address, data and control); word size

Features

Program Counter; Stack; Status Register; General Purpose Registers; Arithmetic and Logic Unit (ALU); Instruction Set

Memory

SRAM; DRAM; flash memory

Applications

- Control systems: Engine management systems (EMU); robotics; distributed control systems; coin-operated machines; printers
- *Instrumentation systems*: data acquisition systems; data logging systems; indicator display systems; 'intelligent' panel instruments; test equipment
- *Communication systems*: modems; radio transmitters; radar systems
- *Commercial systems*: electronic funds transfer at point of sale systems (EFTPOS); electronic bank teller machines; hand-held stock loggers

Learning outcome

The learner will:

```
2. Be able to develop software for microprocessor-based systems
```

Assessment criteria

The learner can:

- 2.1 Design software to given specifications using software design **techniques**
- 2.2 Use computer **language** to develop programs for simple **operations**
- 2.3 Use **software debugging tools** to **test** software against specifications

Range

Techniques

Algorithms in the form of a structure chart showing actions and conditions; pseudo code

Language

Assemblers; high-level language compilers (C $^{++}$, Visual BASIC, Java, Pascal (Delphi))

Operations

Interface to external devices: lights; switches; motors; heaters; keypads; liquid crystal displays (LCD); light emitting diode (LED) displays; printers; analogue to digital converters (ADC); digital to analogue converters (DAC)

Software debugging tools

Integrated Development Environment (IDE); In-Circuit Emulation (ICE); simulators

Test

Data (inputs and expected outputs) should be prepared prior to running programs and results of the tests should be documented

Learning outcome

The learner will:

3. Be able to develop simple control software for programmable interface devices

Assessment criteria

The learner can:

- 3.1 Evaluate programmable interface devices in terms of functionality
- 3.2 Develop simple control software against given specifications

Range

Interfaces

Universal asynchronous receiver transmitter (UART); programmable peripheral interface (PPI); I/O mapped devices, memory-mapped devices

Functionality

Control signals; interrupts; polling; handshaking; port current rating; (interfaces can be in parallel or serial form in terms of performance or distance respectively)

Specifications

Testing; control; monitoring

Unit 440 Fundamentals of airworthiness management

UAN:	D/504/9628
Level:	4
Credit value:	15
GLH:	75
Aim:	The purpose of this unit is to enable learners to develop an understanding of the fundamentals of airworthiness management.

Learning outcome

The learner will:

1. Understand the requirements of legislation within aviation

Assessment criteria

The learner can:

- 1.1 Outline the responsibilities of aviation authoritative **organisations**
- 1.2 Explain the content and purpose of **sub-parts** specific to **legislation**
- 1.3 Evaluate the **relationship** between aviation authoritative organisations

Range

Organisations

ICAO; EASA; CAA; MAA; FAA

Sub-parts

Design; certification; continuing airworthiness; training; personnel licencing; maintenance; operations (eg EASA/MAA Part 21, Part M, Part 147, Part 66, Part 145, EU-Ops)

Legislation

International; national; regional

Relationship

Purpose; areas of operation; powers; obligations; responsibilities for aviation safety.

Learning outcome

The learner will:

2. Understand the requirements of aircraft design, manufacture and repair

Assessment criteria

The learner can:

- 2.1 Outline the purpose and responsibilities of an aircraft design authority
- 2.2 Explain the **regulatory requirements** for aircraft design
- 2.3 Explain the **regulatory requirements** for aircraft manufacture
- 2.4 Explain the **requirements** by which an aircraft is declared 'fit to fly'
- 2.5 Evaluate the **limitations** on aircraft 'fitness to fly' imposed by maintenance activities

Range

Regulatory requirements for aircraft design

Certification specifications; categories of certification

Regulatory requirements for aircraft manufacture

Different cert specs eg EASA (CS 23/25/27/29); appropriate national/military alternatives

Requirements

General aircraft certification rules eg Design organisation (type certification / supplemental type certification); certificate of airworthiness, registration, noise, weight schedule, radio; reasons for certification, criteria for retention, withdrawal, validity, issuing authority

Limitations

Repair outside of SRM; airworthiness directives; military; ADD; operational restrictions

Learning outcome

The learner will:

3. Understand the requirements of aircraft flight testing

Assessment criteria

The learner can:

- 3.1 Explain the **regulatory requirements** for aircraft **flight testing**
- 3.2 Assess the effect of **aircraft serviceability status** on suitability for flight

Regulatory requirements

eg responsibilities of authorities; approved design standards; airworthiness limitations; certification maintenance requirement ; flights outside design envelope; military; customs; police aircraft.

Flight testing

Development testing; post-production; post-maintenance

Aircraft serviceability status:

Eg Certificate of Airworthiness; Permit to fly; certificate of registration; noise certificate; weight schedule; radio station license and approval; restricted certificate of air worthiness; reason for certification; information shown on certificate; criteria for retention; criteria for withdrawal; authority to issue; validity; reason for issue; responsibilities; criteria; test flights for EASA and Non-EASA Aircraft; responsibilities; aircraft affected; conditions; approvals; MEASSL; MEL/CDL

Learning outcome

The learner will:

4. Understand the need for continuing airworthiness

Assessment criteria

The learner can:

- 4.1 Analyse the requirements for **aircraft maintenance organisations**
- 4.2 Assess the certification requirements for **aircraft maintenance personnel**
- 4.3 Evaluate the **effects** maintenance has on aircraft operations

Range

Aircraft maintenance organisations

Eg Part 145 (Maintenance Organisations Exposition (MOE) would include: facilities, personnel requirements, certifying staff, quality system etc); Part M (Subpart F: Maintenance Organisation Manual (MOM) would include: personnel requirements, limits of responsibilities, authorisations etc.)

Aircraft maintenance personnel

Eg Part 66; basic training course; issue of licences; examinations; practical experience; log books; privileges; Part 145 including (overview of Commercial Air Transport Operations)

Effects

eg limitations to operations; increased operating cost; reduced capacity; restrictions on flight envelope; reduced availability

Unit 441 Integrated aircraft systems

UAN:	Y/504/9630
Level:	4
Credit value:	10
GLH:	50
Aim:	The purpose of this unit is to enable learners to develop an understanding of integrated aircraft systems.

Lear	rning outcome
The	learner will:
1. l	Inderstand the interaction between integrated aircraft systems
Ass	essment criteria
The	learner can:
1.1	Explain the interaction between system functions to control aircraft operation
1.2	Differentiate between aircraft data bus standards
1.3	Evaluate types of signal transmission used in integrated aircraft systems
1.4	Assess the need for built-in redundancy in integrated aircraft systems

Range

System

eg pilot; air data; engine controls; flight management system; hydraulics; pneumatics; auto-pilot; navigation; communications; fuel control; flight controls

Types

eg human; electronic; fluid

Integrated aircraft systems

eg communication systems (fibre optics, shielded copper wires, training); navigation systems; on-board maintenance systems; integrated modular avionic systems; cabin systems; emergency

systems; information systems; flight management systems; flight control systems

Learning outcome

The learner will:

2. Understand how the serviceability of integrated aircraft systems is monitored

Assessment criteria

The learner can:

- 2.1 Explain how **management systems** are used to maintain aircraft reliability
- 2.2 Determine the effects of **operational requirements** on integrated aircraft systems

Range

Management systems

eg EHMS; OBMS

Operational requirements

eg minimum equipment list; configuration deviation list

Unit 442 Fault finding diagnosis

UAN:	A/504/9765
Level:	4
Credit value:	10
GLH:	20
Aim:	The purpose of this unit is to enable learners to develop an understanding of fault finding diagnosis.

Learning outcome

The learner will:

1. Understand the principles of fault diagnosis

Assessment criteria

The learner can:

- 1.1 Explain the **process** involved in fault detection and diagnosis
- 1.2 Explain the systems involved in fault detection and diagnosis

Range

Process

Fault isolation, root cause, detection + isolation = diagnosis, determining size of fault, determining the time of onset of the fault

Learning outcome

The learner will:

2. Understand how to identify faults

Assessment criteria

The learner can:

- 2.1 Explain how to identify faults
- 2.2 Explain the **methods** used in identifying and isolating faults
- 2.3 Analyse the different **symptoms** of faults

Range

Methods

Quantitative; qualitative

Symptoms

Non-optimal operation; poor choice; operating targets; poor feedstock; poor controller tuning; partial loss of activity; sensor, calibration errors; human error

Learning outcome

The learner will:

3. Understand how to rectify faults

Assessment criteria

The learner can:

- 3.1 Explain how to rectify faults
- 3.2 Explain how to prevent faults from reoccurring

Range

Rectify faults

Fault management; abnormal condition management; detection steps; filtering; event generation; detection; diagnosis; correlation; mitigation; analysis

Prevent faults

Fault signatures; pattern recognition and classifiers; neural networks; procedural; workflow approaches; event-orientated fault detection; passive system monitoring vs active testing; rule-based approaches; hybrid approaches; filtering

Learning outcome

The learner will:

4. Be able to recommend ways to minimise/mitigate

Assessment criteria

The learner can:

- 4.1 Evaluate the **risks** for concluded faults
- 4.2 Propose solutions to minimise fault occurrences

Range

Risks

Visibility of knowledge; false conclusions; fault propagation models; logic trees; procedural methods; transparency

Unit 443 Communication and navigation systems

UAN:	F/504/9766
Level:	4
Credit value:	15
GLH:	30
Aim:	The purpose of this unit is to enable learners to develop an understanding of communication and navigation systems.

Learning outcome		
The learner will:		
1. Understand the principles of aircraft communications		
Assessment criteria		
The	learner can:	
1.1	Research the working principles of radio communications	
1.2	Research the working principles of radio transmitters and	
	receivers used in communication systems	
1.3	Explain how atmospheric conditions affect communication	

Range

systems

Working principles of radio communications

eg properties of atmospheric layers in relation to radio wave propagation; frequency spectrum; radio frequency bands (LF, HF, VHF, UHF, SHF eg Satcom); operating characteristics of radio antennas; transmission lines (antenna feeder cables)

Working principles of radio transmitters and receivers

eg radio signal transmission (generation, modulation, transmission); radio signal reception (receive, process, present)

Atmospheric conditions

eg weather; solar activity; terrain; polar region; stratosphere; troposphere

Learning outcome

The learner will:

2. Understand the principles of aircraft navigation systems

Assessment criteria

The learner can:

- 2.1 Research the **working principles** of airborne navigation systems
- 2.2 Analyse the working principles of **safety airborne systems**

Range

Working principles

eg DME; VOR; ADF; TACAN; GPS/GNSS; ILS; MLS; VLF; RNAV; e-LORAN

Safety airborne systems

eg traffic; atmospheric conditions (eg weather, solar activity, terrain, polar region, stratosphere, troposphere); TCAS; transponder; radio; radar altimeter; secondary surveillance radar

Learning outcome

The learner will:

3. Understand national and international regulations for aircraft communications and navigation systems

Assessment criteria

The learner can:

- 3.1 Analyse the **national and international regulations** in relation to radio communication and navigation systems
- 3.2 Evaluate the **requirements** for secondary/back-up systems for aircraft navigation systems

Range

National and international regulations

eg ICAO; EASA; FAA; CAA; MAA; national governments

Requirements

eg different data/signal source

Learning outcome

The learner will:

4. Understand how data communication systems are used in aircraft operations

Assessment criteria

The learner can:

- 4.1 Explain the **key features** of aircraft instrumentation systems
- 4.2 Review the use of data communication systems in aircraft operations

Key features

eg multi-function display; navigation; flight status; standby; emergency; positioning of sensors; preparation of sensor signals; display and transmission of data

Use of

eg aircraft instrumentation system; system and structural monitoring; operational and maintenance planning; flight status, atmospheric conditions

Unit 444 Efficient maintenance in aircraft operations

UAN:	J/504/9767
Level:	4
Credit value:	5
GLH:	15
Aim:	The purpose of this unit is to enable learners to develop an understanding of efficient maintenance in aircraft operations.

Learning outcome

The learner will:

1. Understand the requirements of flight operations

Assessment criteria

The learner can:

- 1.1 Assess **planning methods** required for maintaining aircraft airworthiness
- 1.2 Analyse the **effect** of maintenance in continuing airworthiness planning

Range

Planning methods

eg CAMO / CAME

Effect

Efficiency of operation of aircraft dependant on clients requirements

Learning outcome

The learner will:

2. Understand the design principles of maintenance schedules and the impact these have on flight operations

Assessment criteria

The learner can:

- 2.1 Outline the principles of maintenance policy/programmes
- 2.2 Describe design criteria for maintenance schedules
- 2.3 Assess the **impact** of maintaining continuing airworthiness against the operations and maintenance schedule of the aircraft
- 2.4 Assess the different maintenance **practices** available for continuing airworthiness
- 2.5 Evaluate **authority and manufacturer requirements** on continuing airworthiness

Design criteria

eg theatre and mode of operation; age (flight cycles, calendar, flying hours)

Impact

eg conflict between operations vs maintenance; aircraft on ground; costs; reliability and safety penalties; deviations to maintenance; time tables; aircraft availability

Practices

Base; line maintenance

Authority and manufacturer requirements

eg Airworthiness Directives; Service Bulletins etc; design; CAA; EASA; FAA; MAA

Learning outcome

The learner will:

3. Understand the implications of mandatory maintenance on the operation of aircraft

Assessment criteria

The learner can:

- 3.1 Outline the need for mandatory maintenance
- 3.2 Evaluate the **requirements** of mandatory maintenance
- 3.3 Evaluate the intervention of the aviation authorities
- 3.4 Analyse the **continuing airworthiness requirements** and **restrictions** for aircraft operations

Range

Requirements

eg MMEL Origin; operator MEL; maintain flight safety; continuing airworthiness; CDL; multiple systems; ETOPS; AWOPS

Aviation authorities

eg CAA; EASA; FAA; MAA

Continuing airworthiness requirements

eg safety requirements; environmental; efficiency; cost

Restrictions

eg thrust settings; TORA; TODA; noise abatement; landing distance

Unit 445 Principles of composite materials

UAN:	D/504/9631
Level:	4
Credit value:	15
GLH:	75
Aim:	The purpose of this unit is to enable learners to develop an understanding of the principles of composite materials. Learners will understand the different structures of composite materials, the fundamentals of polymer chemistry and will look in detail at the materials and techniques used with pre-preg, pre-form materials and in dry fibre moulding. Learners will also gain an understanding of the preparation and assembly methods used for composite components in the manufacture of composite structures.

Lear	ning outcome		
The learner will:			
1. L	1. Understand the principles and structure of composite materials		
Asse	Assessment criteria		
The	earner can:		
1.1	Explain different types and applications of composite materials		
1.2	Explain the concept of reinforcement embedded within a matrix and the resultant integrated properties		
1.3	Explain types of reinforcement and their selection for particular applications		
1.4	Explain reinforcement presentation and their selection for particular applications		
1.5	Explain the purpose and concept of core materials and their selection for particular applications		
1.6	Describe the composition of commonly used composite matrix materials		
1.7	Analyse mechanical properties of composite materials		
1.8	Explain the concept and principles of laminate characteristics		
1.9	Evaluate the application of composites		
1.10	Review the advantages and disadvantages of composites		

1.11 Describe health and safety **requirements** for handling and using composite materials

Range

Types

PMC; MMC; CMC

Reinforcement

Stiffness; strength; materials

Matrix

Chemical and adhesive properties

Reinforcement

Glass; carbon; aramids; thermoplastic fibres; metal; aligned continuous; random discontinuous; ceramic; metal; natural fibres

Presentation

Uni-directional; bonded; stitched; braids; roving; woven

Core materials

Honeycombs; woods; foams; inserts

Composition

Thermosetting polymers; thermoplastic polymer; metal; ceramic; bioresins

Mechanical properties

Load transfer; rule of averages; transverse and axial stiffness; long and short fibres; anisotropic and isotropic strength; creep; wear; toughness; thermal stability; composite classification

Principles

Ply direction; direction of stiffness; rule of mixtures; use of cores

Application

Sector-specific (eg aircraft, automotive, marine, power generation, construction, civil engineering, rail)

Advantages and disadvantages:

Material performance; weight; embedded defects; cost; lifespan; degradation; repair; assembly; bespoke properties

Requirements

Bulk storage; ventilation and temperature control of work areas; protection of respiratory system; skin; fire protection; long and short term exposure to fibres; solvents and matrix materials

Learning outcome

The learner will:

2. Understand elementary polymer chemistry

Assessment criteria

The learner can:

- 2.1 Describe the chemistry of the **main classes of resin systems**
- 2.2 Compare the **properties** of thermoplastics and thermosets

- 2.3 Analyse the **performance** of resin systems in different applications
- 2.4 Evaluate the use of **additional materials** in resin systems
- 2.5 Assess the curing cycle for different resin systems
- 2.6 Explain how resin systems are recycled and/or disposed of

Main classes of resin systems Thermoplastics; thermosets

Properties

Physical; chemical

Performance

eg strength; corrosion resistance; UV resistance; toughness

Additional materials

Additives; fillers; pigments; fire retardants

Learning outcome

The learner will:

3. Understand the materials and techniques used with preimpregnated (pre-preg) and pre-formed (pre-forms) materials

Assessment criteria

The learner can:

- 3.1 Explain the **benefits** of pre-combined materials
- 3.2 Describe **pre-preg materials** and their use in manufacturing
- 3.3 Describe pre-form materials and their use in manufacturing
- 3.4 Explain storage requirements for pre-preg materials
- 3.5 Explain laminate preparation and efficient use of consumables
- 3.6 Explain techniques for manufacturing components from pre-preg materials
- 3.7 Review advantages and disadvantages of using pre-preg materials

Range

Benefits

Quality control; productivity; cost effective

Pre-preg materials

Woven; uni-directional; B-stage material; filler

Pre-form materials

eg 3D; cloths

Storage requirements

Refrigeration

Preparation

Nesting; cutting; kitting; bagging materials; release films; safe disposal of waste

Techniques

Manual (use of heat and pressure; autoclave, out of autoclave; vacuum bag); automated (automatic tape laying)

Advantages

Easier to lay up; greater consistency; less voids; better surface finish

Disadvantages

Equipment expenditure; storage; cost

Learning outcome

The learner will:

4. Understand the materials and techniques used in dry fibre moulding

Assessment criteria

The learner can:

- 4.1 Describe materials used in dry-fibre moulding
- 4.2 Describe manufacturing **techniques** used in dry-fibre moulding
- 4.3 Describe **components** that can be added during manufacture for specific purposes
- 4.4 Review **advantages** and **disadvantages** of using dry fibre moulding techniques

Range

Materials

Cores; resins; fibres

Techniques

Manual; resin infusion; resin transfer; filament winding; pultrusion; fibre placement

Components

Fixings; optical fibre sensors for stress monitoring; conductive strips for lightning strike protection

Advantages

Price; set-up cost; component parts; higher productivity; less/skilled labour

Disadvantages

Cost of machinery; comparatively poorer quality control

Learning outcome

The learner will:

5. Understand preparation and assembly methods for composite components in the manufacture of composite structures

Assessment criteria

The learner can:

5.1 Describe **adhesive and bonding agents** and their application in composite structures

- 5.2 Describe mechanical fastening methods and fittings used for composite structures
- 5.3 Evaluate the effectiveness of mechanical and chemical techniques in composite structures for different **applications**
- 5.4 Explain the importance of correct surface preparation, sealing and curing

Adhesive and bonding agents Jigs; fixtures

Mechanical fastening methods and fittings:

Shims; bolts

Application

Sector-specific (eg aircraft, automotive, marine, power generation, construction, civil engineering, rail)

Unit 446 Principles of composites manufacture

UAN:	J/504/9638
Level:	4
Credit value:	15
GLH:	60
Aim:	The purpose of this unit is to enable learners to develop an understanding of the principles of composites manufacture. Learners will understand the different manufacturing processes used for thermoplastics and thermosets, implications of manufacturing processes on design for manufacture, types and sources of defects, different applications of NDT methods and the process and quality
	systems required for composite component and structure manufacture.

Learning outcome		
The learner will:		
 Understand the manufacturing processes used for composite components and structures 		
Assessment criteria		
The learner can:		
1.1 Describe the range of processes used in the manufacture of thermoset composite materials		
1.2 Describe the range of processes used in the manufacture of thermoplastic composite materials		
1.3 Research the selection criteria for use of manufacturing processes		
Range		

Range of processes used to manufacture thermoset composite materials

Hand layup; resin infusion systems; resin transfer; filament winding; pultrusion; automated tape and fibre placement; hot press

Range of processes used to manufacture thermoplastic composite materials

Hot press; RTM; compression moulding; pultrusion

Selection criteria

Cost; application; raw materials required; skill of labour force; quality assurance; defect tolerance; repeatability

Learning outcome

The learner will:

2. Understand the implications of manufacturing processes on design for manufacture

Assessment criteria

The learner can:

2.1 Investigate how manufacturing processes influence the **design for manufacture** of composite components and structures

Range

Design for manufacture

Shape; thickness; process sequence; assembly; bonding; surface finish; material selection; quality control

Learning outcome

The learner will:

3. Understand types and sources of manufacture defects of composite components and structures

Assessment criteria

The learner can:

- 3.1 Identify different **types** of manufacturing defects
- 3.2 Explain **sources** of manufacture defects
- 3.3 Analyse the **effects** of different types of manufacturing defects on component and structures fitness for purpose

Range

Types

eg Cavities; wrinkling; porosity; de-lamination; bridging; disbonds; prerelease

Sources

eg Contamination and cleanliness; incorrect process control; environmental; equipment failure; manufacturing damage

Effects

eg Unsatisfactory properties; cost; rework; delivery; service life; premature failure

Learning outcome

The learner will:

4. Understand Non-Destructive Testing (NDT) methods of testing

Assessment criteria

The learner can:

4.1 Explain the principles of **NDT methods**

- 4.2 Review **types**, functions and limitations of NDT systems
- 4.3 Review the **selection criteria** of NDT type to suit manufacture processes and materials

NDT methods

Visual; physical; penetrative

Types

Tap test; visual surface; thermography; x-ray; ultrasonic

Selection criteria

eg costs; accuracy; repeatability; skill level available; effectiveness

Learning outcome

The learner will:

5. Understand process and quality systems required for composite component and structure manufacture

Assessment criteria

The learner can:

- 5.1 Analyse the need for materials life control and correct storage of raw materials and finished product
- 5.2 Analyse the need for environmental controls in composite manufacture and storage
- 5.3 Explain the process of defect management and concessions for composite materials

Unit 450 Developing business improvement plans

UAN:	H/504/9713
Level:	4
Credit value:	10
GLH:	35
Aim:	The purpose of this unit is to provide learners with the knowledge and understanding to be able to develop business plans to implement improvements in the workplace and communicate it appropriately to others.

Learning outcome		
The learner will:		
1. Understand the need for business improvement within organisations		
Assessment criteria		
The learner can:		
1.1 Explain the application of performance measures used in business analysis		
1.2 Explain the application of processing measures used in organisations		
1.3 Explain types of tools used to improve business performance		
1.4 Explain how to apply diagnostic tools		
1.5 Explain the benefits of lean programmes to organisations		
Range		

Performance measures

Cost; OEE; manning; material savings; balanced scorecard

Processing measures

Flow; takt time; pitch time

Tools

Kaizen; 5S/5C analysis; visual management; VSM; TPM; SMED; SOPs; six sigma; line balancing; lead time analysis; process flow analysis

Apply diagnostic tools

Manual; electronic; verbal

Benefits

Cost; quality; productivity; efficiency; effectiveness

Learning outcome

The learner will:

2. Be able to create training plans to identify work place requirements prior to the implementation of the improvement plan

Assessment criteria

The learner can:

- 2.1 Outline improvement plan **objectives**
- 2.2 Explain the **terms of reference** of improvement plans
- 2.3 Explain individual **roles** that will be responsible for improvement activities
- 2.4 Assess **skill and knowledge gaps** in individuals who will be responsible for improvement activities
- 2.5 Produce training plans to address skill gaps of individuals responsible for improvement activities

Range

Objectives

Short term; medium term; long term

Terms of reference

Scope; requirements; constraints

Roles

Colleagues; subordinates; line manager; department heads; managing director; chief executive

Skill and knowledge gaps

Skills matrix; diagnostics; skill scans

Learning outcome

The learner will:

3. Be able to produce business improvement plans

Assessment criteria

The learner can:

- 3.1 Identify resources required for improvement activities
- 3.2 Predict time scales for completion of improvement activities
- 3.3 **Communicate** role responsibilities for improvement activities including required actions
- 3.4 Evaluate the impact of improvement activities on organisational performance
- 3.5 Identify performance measures to be used
- 3.6 State review dates for improvement activities

Range

Resources

Physical; HR; financial

Time scales

Short-term; medium term; long term

Communicate

Eg verbal; non-verbal; formal; informal; electronic

Performance measures

Vision; objectives; stakeholders; financial and quality; cost benefit analysis

Learning outcome

The learner will:

4. Be able to communicate business improvement plans to stakeholders

Assessment criteria

The learner can:

- 4.1 Explain who should be involved/consulted with at each stage of the plan
- 4.2 Communicate potential changes to focus areas
- 4.3 Explain how improvement and training plans will be communicated to the organisation
- 4.4 Present results of planning activities to business stakeholders

Unit 501 Work based project

UAN:	H/504/4043
Level:	5
Credit value:	20
GLH:	20
Aim:	The purpose of this unit is to enable to
	 apply underlying concepts and principles of their area of study to address an identified workplace problem or issue
	 evaluate different approaches to the problem or issue identified
	 initiate and use strategies to address an identified workplace issue
	• demonstrate effective and appropriate communication skills.

Learning outcome

The learner will:

1. Be able to research workplace problems

Assessment criteria

The learner can:

- 1.1 Investigate processes, practices or structures in the workplace to identify an area for development
- 1.2 Propose project ideas

Learning outcome

The learner will:

2. Be able to set project objectives

Assessment criteria

The learner can:

- 2.1 Identify information required for inclusion in work place project proposals
- 2.2 Produce project proposals to required scope
- 2.3 Produce project objectives

Range

Required scope

Increase efficiency; improve customer satisfaction; deliver services more effectively; improvements in quality and output; increase

organisation competitive edge; opportunities to expand services; more flexibility; other (to be specified in proposal)

Learning outcome

The learner will:

3. Be able to source information, concepts and principles relevant to workplace problems

Assessment criteria

The learner can:

- 3.1 Review theories and practices relevant to **workplace project proposal**
- 3.2 Select key sources of data and information to support project

Range

Workplace project proposal

Determined by sector / subject

Sources of data and information

Quantitative and qualitative information; internal workplace/organisation materials; published research

Learning outcome

The learner will:

4. Be able to select project methods to address objectives

Assessment criteria

The learner can:

- 4.1 Evaluate the strengths of **methods** in relation to project objectives
- 4.2 Justify selected method(s) used to address project objectives
- 4.3 Identify strategies appropriate to carry out selected method

Range

Methods

Qualitative research (may include interviews; forums; observation; shadowing, research journal articles, books); quantitative research (may include small sample surveys; questionnaires, sector data, organisational data); application / test of a theory; examination / evaluation of a process

Learning outcome

The learner will:

5. Be able to apply methods to meet objectives

Assessment criteria

The learner can:

- 5.1 Produce work plans to meet objectives
- 5.2 Implement work plans

5.3 Review work plan, adjusting timescales and deliverables accordingly

Range

Work plan must

- include phases and tasks
- include task distribution
- include project requirements against objectives
- include time constraints
- use SMART principles
- record objectives in project plan

Learning outcome

The learner will:

6. Be able to report on the outcomes of projects

Assessment criteria

The learner can:

- 6.1 Produce project outcome report to specified audience
- 6.2 Evaluate the effectiveness of the project
- 6.3 Reflect on learning achieved through the project process
- 6.4 Recommend further learning and/or training needed

Appendix 1

The following documents contain essential information for centres delivering City & Guilds qualifications. They should be referred to in conjunction with this handbook. To download the documents and to find other useful documents, go to the **Centres and Training Providers homepage** on **www.cityandguilds.com**.

Sources of general

information

Centre Manual - Supporting Customer Excellence contains detailed information about the processes which must be followed and requirements which must be met for a centre to achieve 'approved centre' status, or to offer a particular qualification, as well as updates and good practice exemplars for City & Guilds assessment and policy issues. Specifically, the document includes sections on:

- The centre and qualification approval process
- Assessment, internal quality assurance and examination roles at the centre
- Registration and certification of candidates
- Non-compliance
- Complaints and appeals
- Equal opportunities
- Data protection
- Management systems
- Maintaining records
- Assessment
- Internal quality assurance
- External quality assurance.

Our Quality Assurance Requirements encompasses all of the relevant requirements of key regulatory documents such as:

- Regulatory Arrangements for the Qualifications and Credit Framework (2008)
- SQA Awarding Body Criteria (2007)
- NVQ Code of Practice (2006)

and sets out the criteria that centres should adhere to pre and post centre and qualification approval.

Access to Assessment & Qualifications provides full details of the arrangements that may be made to facilitate access to assessments and qualifications for candidates who are eligible for adjustments in assessment.

The **centre homepage** section of the City & Guilds website also contains useful information such on such things as:

- Walled Garden: how to register and certificate candidates on line
- **Qualifications and Credit Framework (QCF)**: general guidance about the QCF and how qualifications will change, as well as information on the IT systems needed and FAQs
- **Events**: dates and information on the latest Centre events
- **Online assessment**: how to register for e-assessments.

City & Guilds **Believe you can**

www.cityandguilds.com

Useful contacts

UK learners General qualification information	T: +44 (0)844 543 0033 E: learnersupport@cityandguilds.com
International learners	T: +44 (0)844 543 0033
General qualification information	F: +44 (0)20 7294 2413
	E: intcg@cityandguilds.com
Centres	T: +44 (0)844 543 0000
Exam entries, Certificates,	F: +44 (0)20 7294 2413
Registrations/enrolment, Invoices, Missing or late exam materials, Nominal roll reports, Results	E: centresupport@cityandguilds.com
Single subject qualifications	T: +44 (0)844 543 0000
Exam entries, Results, Certification,	F: +44 (0)20 7294 2413
Missing or late exam materials,	F: +44 (0)20 7294 2404 (BB forms)
Incorrect exam papers, Forms	E: singlesubjects@cityandguilds.com
request (BB, results entry), Exam date and time change	
International awards	T: +44 (0)844 543 0000
Results, Entries, Enrolments,	F: +44 (0)20 7294 2413
Invoices, Missing or late exam materials, Nominal roll reports	E: intops@cityandguilds.com
Walled Garden	T: +44 (0)844 543 0000
Re-issue of password or username,	F: +44 (0)20 7294 2413
Technical problems, Entries, Results, e-assessment, Navigation, User/menu option, Problems	E: walledgarden@cityandguilds.com
Employer	T: +44 (0)121 503 8993
Employer solutions, Mapping, Accreditation, Development Skills, Consultancy	E: business@cityandguilds.com
Publications	T: +44 (0)844 543 0000
Logbooks, Centre documents, Forms, Free literature	F: +44 (0)20 7294 2413

Every effort has been made to ensure that the information contained in this publication is true and correct at the time of going to press. However, City & Guilds' products and services are subject to continuous development and improvement and the right is reserved to change products and services from time to time. City & Guilds cannot accept liability for loss or damage arising from the use of information in this publication.

If you have a complaint, or any suggestions for improvement about any of the services that we provide, email:

feedback and complaints @city and guilds.com

About City & Guilds

As the UK's leading vocational education organisation, City & Guilds is leading the talent revolution by inspiring people to unlock their potential and develop their skills. We offer over 500 qualifications across 28 industries through 8500 centres worldwide and award around two million certificates every year. City & Guilds is recognised and respected by employers across the world as a sign of quality and exceptional training.

City & Guilds Group

The City & Guilds Group operates from three major hubs: London (servicing Europe, the Caribbean and Americas), Johannesburg (servicing Africa), and Singapore (servicing Asia, Australia and New Zealand). The Group also includes the Institute of Leadership & Management (management and leadership qualifications), City & Guilds Land Based Services (land-based qualifications), the Centre for Skills Development (CSD works to improve the policy and practice of vocational education and training worldwide) and Learning Assistant (an online e-portfolio).

Copyright

The content of this document is, unless otherwise indicated, © The City and Guilds of London Institute and may not be copied, reproduced or distributed without prior written consent. However, approved City & Guilds centres and candidates studying for City & Guilds qualifications may photocopy this document free of charge and/or include a PDF version of it on centre intranets on the following conditions:

- centre staff may copy the material only for the purpose of teaching candidates working towards a City & Guilds qualification, or for internal administration purposes
- candidates may copy the material only for their own use when working towards a City & Guilds qualification The *Standard Copying Conditions* (see the City & Guilds website) also apply.

Please note: National Occupational Standards are not C The City and Guilds of London Institute. Please check the conditions upon which they may be copied with the relevant Sector Skills Council.

Published by City & Guilds, a registered charity established to promote education and training

City & Guilds 1 Giltspur Street London EC1A 9DD T +44 (0)844 543 0000 F +44 (0)20 7294 2413 www.cityandguilds.com

2875-40-v2.0