Cityen
 Guilds

Computer Aided Design (7689)

September 2017 Version 3.1

Qualification Handbook

Contents

Contents 2
Qualification at a glance 3
1 Introduction 5
Structure 6
2 Centre requirements 10
Approval 10
Resource requirements 10
Learner entry requirements 10
3 Delivering the qualification 11
Initial assessment and induction 11
Support materials 11
4 Assessment 12
Summary of assessment methods 12
5 Units 15
Unit 101 Computer Aided Design Using Parametric Modelling Software 16
Unit 201 Computer Aided Design Using Parametric Modelling Software 21
Unit 202 Using 2D Computer Aided Design Software 26
Unit 301 Computer Aided Design Using Parametric Modelling Software 30
Unit 302 Using 2D Computer Aided Design Software 34
Unit 303 Using 3D Computer Aided Design Software 39
Appendix 1 Relationships to other qualifications 43
Appendix 2 Sources of general information 44

Qualification at a glance

Subject area	CAD
City \& Guilds number	7689
Age group approved Level 1 and 2	Pre 16, 16-18 and 19+
Age group approved Level 3	16-18 and 19+
Entry requirements	None
Assessment	Assignment
Support materials	- Centre handbook - Assignments (PDF version) - Assignments (Word version)
Registration and certification	Consult the Walled Garden / Online Catalogue for last dates

Title and level	GLH	TQT	City \& Guilds number	Accreditation number
Level 1 Award in Parametric Modelling	60	70	7689-01	601/5120/1
Level 2 Award in Parametric Modelling	60	110	7689-02	601/5113/4
Level 3 Award in Parametric Modelling	90	120	7689-03	601/5114/6
Level 2 Award in 2D Computer Aided Design	60	70	7689-04	601/5115/8
Level 3 Award in 2D Computer Aided Design	90	120	7689-05	601/5116/X
Level 3 Award in 3D Computer Aided Design	90	100	7689-06	601/5117/1
Level 2 Certificate in Computer Aided Design	120	180	7689-07	601/5118/3
Level 3 Certificate in Computer Aided Design	180	220	7689-08	601/5119/5

Version and date	Change detail	Section
V2.0 November 2015	Corrected Unit Accreditation Number and credits for Unit 201	Structure
		Units
January 2017 Version 3.0	TQT added, pre 16 age group added where appropriate.	Centre requirements, Structure
September 2017 Version 3.1	Added TQT details	Qualification at a glance and Structure
	Deleted QCF	Throughout

2 Introduction

This document tells you what you need to do to deliver the qualifications.

Area	Description
Who are the qualifications for?	These provide learners with the essential skills in how to use Computer Aided Design software. You will learn how an object is designed in either 2D or 3D and how objects can be manufactured.
What do the qualifications cover?	They provide learners with the skills and knowledge to design object in either 2D or 3D. These qualifications allow candidates to learn, develop and practise the skills required for employment and / or career progression in the broad Engineering and Manufacturing sectors
What opportunities for progression are there?	They allow candidates to progress into employment or to the following City \& Guilds qualifications:
	Level 2 Certificate in Engineering $-\quad$ Level 3 Diploma in Engineering

Structure

The tables below outline the structure and rules of combination for these qualifications.

To achieve the 7689-01 Level $\mathbf{1}$ Award in Parametric Modelling learners must achieve $\mathbf{7}$ credits from mandatory unit 101.

Level 1 Award in Parametric Modelling (7689-01)

UAN	 Guilds unit number	Unit title	Group (if applic able)	Credit Value	GLH
Mandatory					
Y/506/7819	101	Computer Aided Design Using Parametric Modelling Software	n/a	7	60

To achieve the 7689-02 Level 2 Award in Parametric Modelling learners must achieve 11 credits from mandatory unit 201

Level 2 Award in Parametric Modelling (7689-02)

UAN	 Guilds unit number	Unit title	Group (if applic able)	Credit Value	GLH
Mandatory					
T/506/8203	201	Computer Aided Design Using Parametric Modelling Software	n/a	11	60

To achieve the 7689-03 Level 3 Award in Parametric Modelling learners must achieve 12 credits from mandatory unit 301 .

Level 3 Award in Parametric Modelling (7689-03)

UAN	 Guilds unit number	Unit title	Group (if applic able)	Credit Value	GLH
Mandatory					
D/506/7823	301	Computer Aided Design Using Parametric Modelling Software	n/a	12	90

To achieve the 7689-04 Level $\mathbf{2}$ Award in 2D Computer Aided Design learners must achieve $\mathbf{7}$ credits from mandatory unit 202.

Level 2 Award in 2D Computer Aided Design (7689-04)

UAN	 Guilds unit number	Unit title	Group (if applic able)	Credit Value	GLH
Mandatory					
L/506/7820	202	Using 2D Computer Aided Design Software	n/a	7	60

To achieve the 7689-05 Level 3 Award in 2D Computer Aided Design learners must achieve $\mathbf{1 2}$ credits from mandatory unit 302.

Level 3 Award in 2D Computer Aided Design (7689-05)

UAN	 Guilds unit number	Unit title	Group (if applic able)	Credit Value	GLH
Mandatory					
R/506/7821	302	Using 2D Computer Aided Design Software	n/a	12	90

To achieve the 7689-06 Level 3 Award in 3D Computer Aided Design learners must achieve 10 credits from mandatory unit 303 .

Level 3 Award in 3D Computer Aided Design (7689-06)

UAN	City \& Guilds unit number	Unit title	Group (if applic able)	Credit Value	GLH
Mandatory					
H/506/7824	303	Using 3D Computer Aided Design Software	n/a	10	90

To achieve the 7689-07 Level $\mathbf{2}$ Certificate in Computer Aided Design learners must achieve 18 credits from both mandatory units 201 and 202.

Level 2 Certificate in Computer Aided Design (7689-07)

UAN	 Guilds unit number	Unit title	Group (if applic able)	Credit Value	GLH
Mandatory					
T/506/8203	201	Computer Aided Design Using Parametric Modelling Software	n / a	11	60
L/506/7820	202	Using 2D Computer Aided Design Software	$\frac{n / a}{7}$	7	60

To achieve the 7689-08 Level 3 Certificate in Computer Aided Design learners must achieve $\mathbf{2 2}$ credits from any two of the optional units 301, 302 and 303.

Level 3 Certificate in Computer Aided Design (7689-08)

UAN	City \& Guilds unit number	Unit title	Group (if applic able)	Credit Value	GLH
Optional					
D/506/7823	301	Computer Aided Design Using Parametric Modelling Software	n/a	12	90
R/506/7821	302	Using 2D Computer Aided Design Software	n/a	12	90
H/506/7824	303	Using 3D Computer Aided Design Software	n/a	10	90

Total qualification time (TQT)

Total Qualification Time (TQT) is the total amount of time, in hours, expected to be spent by a Learner to achieve a qualification. It includes both guided learning hours (which are listed separately) and hours spent in preparation, study and assessment.

Title and level	GLH	TQT
Level 1 Award in Parametric Modelling	60	70
Level 2 Award in Parametric Modelling	60	110
Level 3 Award in Parametric Modelling	90	120
Level 2 Award in 2D Computer Aided Design	60	70

Title and level	GLH	TQT
Level 3 Award in 2D Computer Aided Design	90	120
Level 3 Award in 3D Computer Aided Design	90	100
Level 2 Certificate in Computer Aided Design	120	180
Level 3 Certificate in Computer Aided Design	180	220

2 Centre requirements

Approval

Centres already approved to offer the qualification 7579 will be given automatic approval to deliver the new 7689 qualifications.

New centres will need to gain both centre and qualification approval to offer these qualifications. Please refer to the Centre Manual - Supporting Customer Excellence for further information.

Centre staff should familiarise themselves with the structure, content and assessment requirements of the qualifications before designing a course programme.

Resource requirements

Centre staffing

Staff delivering these qualifications must be able to demonstrate that they meet the following occupational expertise requirements. They should:

- be occupationally competent or technically knowledgeable in the area[s] for which they are delivering training and / or have experience of providing training. This knowledge must be to the same level as the training being delivered
- have recent relevant experience in the specific area they will be assessing
- have credible experience of providing training.

See also page 16 for details from the assessment strategy on the role of supervisors and managers in the assessment process.

Centre staff may undertake more than one role, eg tutor and assessor or internal verifier, but cannot internally verify their own assessments.

Learner entry requirements

City \& Guilds does not set entry requirements for these qualifications. However, centres must ensure that candidates have the potential and opportunity to gain the qualifications successfully.

Age restrictions

For Level 1 and 2 City \& Guilds will accept registrations for candidates aged pre 16, 16-18 and 19+. For Level 3 City \& Guilds will accept registrations for candidates aged 16-18 and 19+.

3 Delivering the qualification

Initial assessment and induction

An initial assessment of each candidate should be made before the start of their programme to identify:

- if the candidate has any specific training needs
- support and guidance they may need when working towards their qualifications
- any units they have already completed, or credit they have accumulated which is relevant to the qualifications
- the appropriate type and level of qualification.

We recommend that centres provide an induction programme so the candidate fully understands the requirements of the qualification, their responsibilities as a candidate, and the responsibilities of the centre. This information can be recorded on a learning contract.

Support materials

The following resources are available for these qualifications
Description How to access

Fast track approval form
www.cityandguilds.com

4 Assessment

All units in these qualifications are assessed by assignments set by City \& Guilds, internally marked by centres and externally verified. These assignments are graded Pass, Merit and Distinction.
Each assignment consists of practical tasks and short-answer questions.
These assessments have all been developed with input from experts in the industry.

Summary of assessment methods

Candidates must:

- successfully complete one assignment for each mandatory unit
- successfully complete one assignment for each chosen optional unit.

City \& Guilds provides the following assessments:

| | Assessment Types | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Unit | Level | Title | Assessment method | Where to obtain
 assessment materials |
| 101 | 1 | Computer Aided
 Design Using
 Parametric Modelling
 Software | Assignment 7689-101
 This assignment covers
 all the learning outcomes
 in this unit. | www.cityandguilds.com |

Any electronic files or templates that are required to deliver the practical tasks within each assignment are provided on our website.

Time constraints

The following must be applied to the assessment of these qualifications:

- candidates must finish their assessment within six months
- assignments should take no longer than 8 hours. If they do, centres should consider why this is, and make sure that they are not trying to gather too much evidence.

Contextualised tasks

Centres are allowed to contextualise the practical tasks within each assignment to suit the needs of different industry sectors. Design specifications within a task can be contextualised, however the grading criteria and the mark sheet provided in each assignment must be used and cannot be changed, to ensure validity and comparability of the grades achieved by candidates.
City \& Guilds provides a Word version of each assignment on the website that centres can use to contextualise tasks. Further guidance about this is provided in the Assessor Guidance section within each assignment.

If a centre would like to contextualise a task within an assignment they should complete the equivalent Word document of the assignment found on City \& Guilds 7689 webpage and forward this to their External Quality Assurer (EQA) for review and approval.

Centres are not allowed to change or contextualise the short-answer questions within the assignments.

Recognition of prior learning (RPL)

Recognition of prior learning means using a person's previous experience or qualifications which have already been achieved to contribute to a new qualification.
RPL is not allowed for these qualifications.

5 Units

Structure of units

These units each have the following:

- City \& Guilds reference number
- unit accreditation number (UAN)
- title
- level
- credit value
- guided learning hours
- relationship to NOS, other qualifications and frameworks
- unit aim
- information on assessment
- learning outcomes which are comprised of a number of assessment criteria
- notes for guidance if applicable.

Unit 101

Computer Aided Design Using Parametric Modelling Software

UAN:	Y/506/7819
Level:	Level 1
Credit value:	7
GLH:	60
Relationship to NOS:	Producing CAD Models (Drawings) using a CAD System
Aim:	This unit will equip candidates with an understanding of the CAD Parametric Modelling environment, in terms of hardware, software and physical surroundings. It will explore the typical composition of a CAD Parametric Modelling system and Health and Safety matters that are associated with safe working practices.
Assessment type	Assignment

Learning outcome:

The learner will:

1. Be able to use a parametric modelling workstation safely

Assessment criteria

The learner can:
1.1 identify hardware required for a parametric modelling system
1.2 identify software required for a parametric modelling system
1.3 manage files including file types
1.4 follow legislation associated with parametric modelling use
1.5 identify safe working practices
1.6 identify common injuries associated with extended computer use

Range

Hardware

Processor type and speed, mother board, memory, RAM, ROM, file storage, external storage devices, graphics card, screen resolution, input devices - (mouse, keyboard, touch screen), output devices - (printer / plotter, speakers, monitor, consumables)

Software

Operating systems, device drivers, application programmes, antivirus software

Legislation

Health and Safety at Work (1974), Data Protection Act, copyright

Safe working practices

Lighting, ventilation, good posture, frequent breaks, ergonomics

Common injuries

Eye strain, back / neck strain, RSI

Learning outcome

The learner will:
2. Be able to use key components used in parametric modelling software

Assessment criteria

The learner can:
2.1 identify the features of a parametric modelling interface
2.2 use parametric modelling to create parts accurately
2.3 identify viewing tools
2.4 use standard templates to create parts and assemblies

Range

Features

Start-up menu, ribbon / toolbar, tabs, browser, design tree, dialogue boxes, properties, drawing aids, visual settings, background colour, units

Parametric modelling

Sketch, origin, default work planes, constraints, line-types, Cartesian co-ordinate system

Viewing tools

Zoom, pan, navigation tools, function keys

Learning outcome

The learner will:
3. Be able to use commands to create and constrain sketches

Assessment criteria

The learner can:
3.1 identify the standard work planes
3.2 create sketches on the standard work planes
3.3 create geometry within the sketch environment
3.4 use geometric constraints when sketching
3.5 display and remove geometric constraints
3.6 add dimensions to sketch to further constrain geometry
3.7 create construction and centre lines

Range
Standard work planes
Origin, XY, XZ, YZ

Geometry

Lines, arcs, circles, rectangles, slots, ellipses, polygons

Geometric constraints

Coincident, collinear, concentric, parallel, perpendicular, horizontal, vertical, tangent, symmetric, equal

Dimensions

Linear, radius, diameter, angular, aligned, driven

Learning outcome

The learner will:
4. Be able to use commands to produce features

Assessment criteria

The learner can:
4.1 create extruded features from sketched geometry
4.2 create revolved features from sketched geometry
4.3 select surfaces to act as sketch planes for the creation of new features
4.4 edit existing features and sketches by changing their definitions
4.5 create ribs and webs from open and closed profiles

Learning outcome

The learner will:
5. Be able to use placed features to modify parametric models

Assessment criteria

The learner can:
5.1 identify sketch driven features and placed features
5.2 state the importance of design intent when producing a single part
5.3 create placed features on models
5.4 modify placed features on models

Range

Sketch driven features

Fillet, chamfer, circle, rectangle

Design intent

The importance of order of design/ logical order of creating design

Placed features

Fillet, chamfer, holes and threads, shell, pattern (circular, rectangular), drafts

Learning outcome

The learner will:
6. Be able to create an assembly

Assessment criteria

The learner can:
6.1 place component parts into an assembly
6.2 use assembly constraints to assemble and align parts

Range

Constraints

Mate, angle, tangent, insert, symmetry

Learning outcome

The learner will:
7. Be able to produce output using the drawing layout environment

Assessment criteria

The learner can:
7.1 create a new drawing layout using an existing metric template
7.2 control the appearance of the views within a layout
7.3 add text annotations to views and title block
7.4 create a drawing layout in a presentation format to suit the software in use

Range

Appearance of the views

Orthographic, isometric, hidden, shaded, scale

Format

Printed, PDF, DWF, JPG, BMP, STL

Unit 201

Computer Aided Design Using Parametric Modelling Software

UAN:	T/506/8203
Level:	Level 2
Credit value:	11
GLH:	60
Relationship to NOS:	Producing CAD Models (Drawings) using a CAD System
Aim:	This unit aims to deepen the learners' understanding of the CAD Parametric Modelling environment and its application. It will enable the learner to develop the knowledge and skills to create sketches, work features, table driven parts and assemblies, understand constraints and be able to create a drawing layout.
Assessment type	Assignment

Learning outcome:

The learner will:

1. be able to use a parametric modelling workstation safely

Assessment criteria

The learner can:
1.1 follow legislation associated with parametric modelling use
1.2 describe safe working practices
1.3 identify common injuries associated with extended computer use

Range

Legislation

Health and Safety at Work (1974), Data Protection Act, copyright

Safe working practices

Lighting, ventilation, good posture, frequent breaks, ergonomics

Common injuries

Eye strain, back / neck strain, RSI

Learning outcome

The learner will:
2. Be able to create sketches

Assessment criteria

The learner can:
2.1 identify default constraints
2.2 use equations in sketch geometry to drive part design intent
2.3 use advanced sketching features

Range

Constraints

Standard 2D constraints (eg coincident, collinear)

Equations

Dimensional relationships, parameter names, visibility

Features

Mirror, offset, copy, move, rotate, pattern, shared sketch, roll back, projected geometry

Learning outcome

The learner will:
3. Be able to create work features and use features

Assessment criteria

The learner can:
3.1 identify work features
3.2 create and edit work features
3.3 create and edit features
3.4 use advanced hole definition features

Range

Work features

User defined work planes, axes, points

Features

Face draft, rib, web, sweep, coil, loft, split, mirror, emboss (or indent), suppress, unsuppress

Hole definition features

Placement, counterbores, countersinking, thread details, clearances

Learning outcome:

The learner will:
4. Be able to create table driven parts and assemblies

Assessment criteria

The learner can:
4.1 identify the controls when linking table driven parts and assemblies
4.2 create sketch relational dimensions to allow design intent to be identified
4.3 create new parts with features derived from existing parts within an assembly
4.4 create parts and assemblies controlled by a linked table
4.5 create tables to control features or parts within a part or assembly

Range

Controls

Parameters, prefixes, functions, algebraic operators

Derived

Copied geometry, projected geometry, referenced geometry

Relational dimensions

Dimension names, equations, user parameters

Linked table

Parameters table, equations

Control

Display or suppress

Learning outcome

The learner will:
5. Understand motion and driven assembly constraints

Assessment criteria

The learner can:
5.1 describe the types of assembly constraints
5.2 use motion and driven relationships between assembly components

Range

Types of assembly constraints
Rotation, rotation-translation, linear

Relationships

Motion constraints

Learning outcome

The learner will:
6. Be able to create a drawing layout to aid the interpretation of design intent

Assessment criteria

The learner can:
6.1 create a custom template file
6.2 output a drawing presentation
6.3 use annotation functions
6.4 produce a saved drawing output in a suitable format

Range

Custom template

ISO drawing sheet size, orientation, border, title block, first / third angle projection, projected views, auxiliary views, drafting standards, text styles, dimension styles, sketched symbol

Drawing presentation

Orthographic, exploded, isometric, section views, rendered, visual application, animated

Annotation functions

Hole and thread notes, centrelines, centre marks, notes, leaders, parts list, balloon referencing, revision tables and tags, service texture symbols, feature control frames, enquiry tools

Formats

Printed, BMP, GIF, IGES, JPEG, PDF, PNG, SAT, STEP, STL, TIFF, XML

Learning outcome

The learner will:
7. Be able to create presentation quality displays of parts and assemblies

Assessment criteria

The learner can:
7.1 create a presentation quality scene layout
7.2 identify suitable file formats for transferring to other graphics packages
7.3 export a presentation quality rendered graphics file in a suitable format

Range

Scene layout

Visual style, material / appearance, lighting, shadows, background, textures / material types, orthographic or perspective

File formats

BMP, JPEG, PNG

Rendered

Pixel resolution, camera, lighting style, scene style, render type

Unit 202

Using 2D Computer Aided Design

 Software| UAN: | Level: $:$ |
| ---: | :--- |
| Credit value: | L/506/7820
 GLH: $:$
 Relationship to NOS: |
| Aim: | Producing CAD Models (Drawings) using a CAD System
 This unit will equip candidates with the basic understanding and
 principles of 2D drawing environment, in terms of hardware,
 software and physical surroundings. It will explore the typical
 composition of a CAD system and health and safety matters that
 are associated with safe working practices.
 Assessment type |
| Assignment | |
| Asmer | |

Learning outcome:

The learner will:

1. Be able to use a CAD workstation safely

Assessment criteria

The learner can:
1.1 identify hardware required for a 2D CAD system
1.2 identify software required for a 2D CAD system
1.3 manage files including file types
1.4 follow legislation associated with computer use
1.5 describe safe working practices
1.6 describe how to prevent common injuries associated with extended computer use

Range

Hardware

Processor type and speed, mother board, memory, RAM, ROM, file storage, external storage devices, graphics card, screen resolution, input devices - (mouse, keyboard, touch screen, scanner), output devices - (printer / plotter, speakers, monitor, consumables)

Software

Operating systems, device drivers, application programmes, antivirus software

Legislation

Health and Safety at Work (1974), Data Protection Act, copyright

Safe working practices

Lighting, ventilation, good posture, frequent breaks, ergonomics

Common injuries

Eye strain, back / neck strain, RSI

Learning outcome

The learner will:
2. Be able to use key components in 2D CAD software

Assessment criteria

The learner can:
2.1 identify the features of a 2D CAD interface
2.2 modify CAD settings to create drawings to correct drawing standards
2.3 describe a range of viewing tools

Range

Interface

Start-up menu, toolbars, icons, menu bar, dialogue boxes, ribbon, command prompt, properties, drawing aids, visual settings, background colour, units, limits

CAD settings

Layers, colours, line-types, line weight, Cartesian co-ordinate system

Viewing tools

Zoom (extents, all, scale, object), pan, viewports, named views

Learning outcome

The learner will:
3. Be able to create lines and shapes relative to a co-ordinate system

Assessment criteria

The learner can:
3.1 describe the differences between co-ordinate entry methods
3.2 use drawing tools to create lines and shapes accurately
3.3 identify the properties between single line and a line with multiple vertices

Range

Co-ordinate entry methods

Absolute, relative, polar

Lines

Centre lines, hidden, dashed, arcs

Shapes

Rectangle, polygon, circles, ellipse

Learning outcome

The learner will:
4. Be able to use text, hatch and simple dimensioning routines

Assessment criteria

The learner can:
4.1 create text styles
4.2 use text entry methods to annotate drawings accurately
4.3 justify text during input to specification
4.4 use hatch patterns to enhance drawings
4.5 perform basic dimension commands to specification

Range

Text styles

Name, font, font size

Dimension commands

Linear, aligned, angular, radius, diameter, leader

Learning outcome

The learner will:
5. Be able to modify existing drawings

Assessment criteria

The learner can:
5.1 identify editing routines used to modify existing drawings
5.2 use editing routines to modify existing drawings

Range

Editing routines

Erase, chamfer, fillet, scale, rotate, trim / extend, break, offset / parallel, lengthen / shorten, explode / join, move, copy, mirror, array, stretch, divide

Learning outcome

The learner will:
6. Be able to output a 2D drawing layout

Assessment criteria

The learner can:
6.1 produce a border and title block
6.2 output a drawing in presentation format to suit the CAD software in use

Range

Output

Printed, PDF, JPG, BMP

Unit 301

Computer Aided Design Using Parametric Modelling Software

| UAN: | D/506/7823 |
| ---: | :--- | :--- |
| Level: | Level 3
 GLedit value: 12
 Gelationship to NOS: Producing Mechanical Engineering Drawings using Computer Aided
 Techniques
 Aim: This unit will enable the learner to develop the knowledge and skills
 to generate and edit advanced models / assemblies using data
 driven parameters and to produce photorealistic rendered
 animations.
 Assessment type Assignment |

Learning outcome:

The learner will:

1. Be able to use a parametric modelling workstation safely

Assessment criteria

The learner can:
1.1 follow legislation associated with computer use
1.2 explain how legislation affects computer use
1.3 describe how to prevent common injuries associated with extended computer use

[^0]
Learning outcome

The learner will:
2. Be able to use advanced features when modelling

Assessment criteria

The learner can:
2.1 manage file types to generate an advanced assembly
2.2 repair lost or disjointed relationships within a part or assembly
2.3 make a design change through editing a part or assembly
2.4 create formed and modelled parts
2.5 create a shape

Range

File types

SAT, STEP

Assembly modelling

Imported parts, design history browser

Disjointed relationships

Design error detection and correction, modelling constraints, file location error

Formed and modelled parts

Sheet metal, weldments

Shape
3D sketch, direct co-ordinate entry, spline, sweep, loft

Learning outcome

The learner will:
3. Be able to create advanced assemblies

Assessment criteria

The learner can:
3.1 describe assembly modelling techniques
3.2 create an assembly using modelling techniques
3.3 create and edit new parts within an assembly
3.4 import and constrain a library feature into a part / assembly
3.5 use mating and fastening features when constructing complex parts / assemblies

Range

Modelling techniques

Top-down, bottom-up, middle-out, design tree, design history browser

New parts

Adaptive features and dimensions

Library feature

Constraint tools, parts library (eg fasteners, bearings, circlips)
Mating and fastening features
Intelligent mating tools, bolted and screw connections

Learning outcome

The learner will:
4. Be able to create and modify table driven parts and assemblies

Assessment criteria

The learner can:
4.1 identify the control parameters when linking a spreadsheet to a part or assembly
4.2 use a spreadsheet to manipulate control parameters within parts and assemblies
4.3 create equations within a spreadsheet to control features within parts and assemblies

Range

Control parameters

Parameters, prefixes, functions, algebraic operators, named dimensions

Features

Spreadsheet: dimensions, parameters, equations, define or suppress

Learning outcome

The learner will:
5. Be able to create presentation graphics

Assessment criteria

The learner can:
5.1 use techniques to produce a photorealistic presentation
5.2 create a rendered animation of a model and export to view in the resident visual software package
5.3 record a rendered animation in a suitable file format for exporting as a video clip

Range

Presentation

Orthographic or perspective, material / appearance, bitmap texture, lighting styles (directional, point, spot), scene styles, camera, render

Rendered animation

Animation timeline, animation options, render animation

File formats

AVI, MOV, WMV

Unit 302

Using 2D Computer Aided Design

 Software| UAN: | Level: |
| ---: | :--- | | R/506/7821 |
| :--- |
| Credit value: | | GLevel 3 |
| :--- |
| Relationship to NOS: | | Aim: |
| :--- |
| Alm |
| Producing Mechanical Engineering Drawings using Computer Aided
 Techniques |
| This unit will enable the learner to have the knowledge and practical
 skills to create complex drawings including annotations and output
 using multiple view layouts. It will also enable them to manage CAD
 drawing data and libraries in line with industry standards. |
| Assessment type | | Assignment |
| :--- |

Learning outcome:

The learner will:

1. Be able to use a CAD workstation safely

Assessment criteria

The learner can:
1.1 follow legislation associated with computer use
1.2 explain how legislation affects computer use
1.3 describe how to prevent common injuries associated with extended computer use

Range

Legislation

Health and Safety at Work (1974), Data Protection Act, copyright

Common injuries

Eye strain, back / neck strain, RSI

Learning outcome

The learner will:
2. Be able to use layers, complex dimensions and text

Assessment criteria

The learner can:
2.1 describe the benefits of using standards in CAD drawings
2.2 create multiple layers
2.3 explain the purpose of layering systems
2.4 create and use multiple text styles
2.5 create and use dimension styles
2.6 explain why dimension styles are used
2.7 create template files

Range

Standards

Company standards, relevant British Standards (BS), International Organisation of Standards (ISO)

Layers

Centre, hidden, outline, border, text, line weight, line type, colour, visibility

Text styles

Font (italic, bold), height, colour

Dimension style

Sub styles (radial, diameter, aligned, angular, linear, leader)

Template files

Borders, layers, text style, dimension style, paper size, title block, output settings

Learning outcome

The learner will:
3. Be able to use library items and external references

Assessment criteria

The learner can:
3.1 explain the benefits of creating and using library items
3.2 explain the benefits of using external references
3.3 create, edit and save library items from existing separate entities
3.4 use library items and external references for the production of drawings

Range

Library items
Blocks / symbols (including attributes / attached text)

External references

Relevant CAD files, PDF, image files

Learning outcome

The learner will:
4. Be able to produce complex drawings

Assessment criteria

The learner can:
4.1 produce drawings using different drawing methods
4.2 describe the benefits of different drawing methods
4.3 explain why drawing aids and keyboard shortcuts are used to assist in drawing production

Range

Drawing methods

Orthographic, first angle, third angle, sectional, assembled, sectioned, isometric, oblique

Drawing aids / Keyboard shortcuts

Orthomode, grid and snap, snaps (eg endpoint, midpoint, centre), function keys, user co-ordinate system, default co-ordinate system

Learning outcome

The learner will:
5. Be able to carry out advanced editing processes

Assessment criteria

The learner can:
5.1 identify numeric information from existing drawings
5.2 modify properties and geometry of drawn entities using a variety of methods
5.3 manipulate continuous sequences of line and arc geometry

Range

Numeric information
X, Y co-ordinate point, distance, angle, radius, area

Methods

Pre-command selection, stretch, move, rotate, scale, mirror, match properties, dialogue boxes, keyboard entry, command prompts

Continuous sequences

Polyline / smartline, spline

Learning outcome

The learner will:
6. Be able to use methods to cleanse a CAD drawing

Assessment criteria

The learner can:
6.1 explain why unused items in a CAD drawing require removal
6.2 apply methods to delete and rename items within a CAD document

Range

Methods

Purge, rename (symbols, layers, line types, text styles, dimension styles)

Learning outcome

The learner will:
7. Be able to output drawings using multiple scale views

Assessment criteria

The learner can:
7.1 create multiple print space layouts in preparation for drawing presentation
7.2 apply standard and custom scales to present various views
7.3 modify layer visibility settings in individual views
7.4 explain the benefits of producing electronic files for design documentation
7.5 define output settings to create an electronic file / hard copy

Range

Layouts

Title block, border, viewports, scale

Benefits

Speed, efficiency, cost effective, communication, backups, space saving, increased accuracy, interaction between hardware

Output settings

Paper size, orientation, scale, drawing position

Electronic file / hard copy

Printed, PDF, JPG, BMP, emails, fax, scanning, CAD drawings

UAN:	Level:	H/506/7824 Credit value:
GLH:	Level 3 Relationship to NOS:	Producing Engineering Drawings / Models using 3D Computer Aided Techniques
Aim:	This unit will allow candidates to develop the ability to apply the drafting procedures required to create and modify existing 3D objects, either surfaces or solids, at any position within Three Dimensional Space.	
Assessment type	Assignment	

Learning outcome:

The learner will:

1. Be able to use a CAD workstation safely

Assessment criteria

The learner can:
1.1 follow legislation associated with computer use
1.2 follow safe working practices
1.3 explain how legislation affects computer use
1.4 describe how to prevent common injuries associated with extended computer use

Range

Legislation

Health and Safety at Work (1974), Data Protection Act, copyright

Safe working practices

Lighting, ventilation, good posture, frequent breaks, ergonomics

Common injuries

Eye strain, back / neck strain, RSI

Learning outcome:

The learner will:
2. Be able to set the 3D modelling environment

Assessment criteria

The learner can:
2.1 create templates for 3D modelling using various settings
2.2 use and restore the default co-ordinate system
2.3 create and apply user co-ordinate systems
2.4 describe the benefits of setting up templates for 3D modelling

Range

Settings

Multi-view windows, drawing aids, system parameters, layers, user interface, icon style, limits, units

Benefits

Standardisation, customisation, ISO standards, company standards

Learning outcome:

The learner will:
3. Be able to construct and edit 3D surface models

Assessment criteria

The learner can:
3.1 use drawing tools to create open 2D shapes using a variety of user co-ordinate systems
3.2 create 3D shapes using surface modelling techniques
3.3 describe 3D surface primitives
3.4 describe surface editing routines used to modify existing surface objects

Range

2D shapes

Lines, arcs, multi-segment line

Surface modelling techniques

Extrude, revolve, planer, network, loft, sweep, mesh tools (edgesurf, rulesurf, tabsurf, revsurf)

3D surface primitives

Box, cylinder, sphere, wedge, cone, pyramid, torus

Surface editing

Fillet, trim, extend, sculpt

Learning outcome:

The learner will:
4. Be able to construct and edit a 3D solid model

Assessment criteria

The learner can:
4.1 use drawing tools to create closed 2D shapes using a variety of user co-ordinate systems
4.2 create 3D shapes using solid modelling techniques
4.3 describe 3D solid primitives
4.4 perform Boolean operations on 3D objects
4.5 modify solid objects using solid editing routines

Range

2D shapes

Rectangle, polygon, circle, region, multi-segment line (closed)

Solid modelling techniques

Extrude, revolve, sweep, loft

3D solid primitives

Box, cylinder, sphere, polysolid, wedge, cone, pyramid, torus

Boolean operations

Join, subtract, intersect

Solid editing routines

Fillet, chamfer, shell, slice, thicken, imprint, taper face, extrude face, copy face, copy edge

Learning outcome:

The learner will:
5. Be able to apply commands to manipulate a 3D model

Assessment criteria

The learner can:
5.1 use a 3D library item
5.2 perform 3D operations on existing 3D models
5.3 obtain mass properties of a 3D solid model

Range

3D operations

3D pattern (rectangular and circular), 3D rotate, 3D mirror

Learning outcome:

The learner will:
6. Be able to apply commands to view 3D models in a variety of display formats

Assessment criteria

The learner can:
6.1 produce various views of 3D models
6.2 view 3D models in a variety of display modes
6.3 explain reasons for creating multiple views of an object
6.4 explain the benefits of saving named views

Range

Various views

Cut-away view, cross-sectional view, orthographic views, isometric views, named views

Display modes

Wireframe, conceptual, hidden, realistic, shaded

Reasons

Visualisation, standardisation, clarity, projection, scaling

Benefits

Retrieval, regeneration, efficiency

Learning outcome:

The learner will:
7. Be able to output a 3D model drawing layout

Assessment criteria

The learner can:
7.1 explain other uses for exported 3D CAD data
7.2 present a 3D model using a template
7.3 output a multiple view model in presentation format to suit the CAD software in use

Range

Uses

Rapid prototyping, CNC, associated software, 3D printer, laser cutting

Output

Printed, PDF, JPG, BMP, DXF, IGES, SAT, STL

Appendix 1 Relationships to other qualifications

Links to other qualifications

This qualification has connections to the:

- Level 2 NVQ Diploma in Performing Engineering Operations Level 3 NVQ Extended Diploma in Engineering Technical Support Level 3 Diploma in Engineering

Appendix 2 Sources of general information

The following documents contain essential information for centres delivering City \& Guilds qualifications. They should be referred to in conjunction with this handbook. To download the documents and to find other useful documents, go to the Centres and Training Providers homepage on www.cityandguilds.com.

Centre Manual - Supporting Customer Excellence contains detailed information about the processes which must be followed and requirements which must be met for a centre to achieve 'approved centre’ status, or to offer a particular qualification, as well as updates and good practice exemplars for City \& Guilds assessment and policy issues. Specifically, the document includes sections on:

- the centre and qualification approval process
- assessment, internal quality assurance and examination roles at the centre
- Registration and certification of candidates
- non-compliance
- complaints and appeals
- equal opportunities
- data protection
- management systems
- maintaining records
- assessment
- internal quality assurance
- external quality assurance.

Our Quality Assurance Requirements encompasses all of the relevant requirements of key regulatory documents such as:

- SQA Awarding Body Criteria (2007)
- NVQ Code of Practice (2006)
and sets out the criteria that centres should adhere to pre and post centre and qualification approval.

Access to Assessment \& Qualifications provides full details of the arrangements that may be made to facilitate access to assessments and qualifications for candidates who are eligible for adjustments in assessment.

The centre homepage section of the City \& Guilds website also contains useful information on such things as:

- Walled Garden: how to register and certificate candidates on line
- Events: dates and information on the latest Centre events
- Online assessment: how to register for e-assessments.

Centre Guide - Delivering International Qualifications contains detailed information about the processes which must be followed and requirements which must be met for a centre to achieve 'approved centre' status, or to offer a particular qualification. Specifically, the document includes sections on:

- the centre and qualification approval process and forms
- assessment, verification and examination roles at the centre
- registration and certification of candidates
- non-compliance
- complaints and appeals
- equal opportunities
- data protection
- frequently asked questions.

Linking to this document from web pages

We regularly update the name of documents on our website, therefore in order to prevent broken links we recommend that you link to our web page that the document resides upon, rather than linking to the document itself.

Useful contacts

UK learners	0)844 5430033
General qualification information	E: learnersupport@cityandguilds.com
International learners	T: +44 (0)844 5430033
General qualification information	F: +44 (0)20 72942413
	E: intcg@cityandguilds.com
Centres	T: +44 (0)844 5430000
Exam entries, Certificates, Registrations/enrolment, Invoices, Missing or late exam materials, Nominal roll reports, Results	F: +44 (0)20 72942413
	E: centresupport@cityandguilds.com
Single subject qualifications	T: +44 (0)844 5430000
Exam entries, Results, Certification, Missing or late exam materials, Incorrect exam papers, Forms request (BB , results entry), Exam date and time change	F: +44 (0)20 72942413
	F: +44 (0)20 72942404 (BB forms)
	E: singlesubjects@cityandguilds.com
International awards	T: +44 (0)844 5430000
Results, Entries, Enrolments, Invoices, Missing or late exam materials, Nominal roll reports	F: +44 (0)20 72942413
	E: intops@cityandguilds.com
Walled Garden	T: +44 (0)844 5430000
Re-issue of password or username, Technical problems, Entries, Results, e-assessment, Navigation, User/menu option, Problems	F: +44 (0)20 72942413
	E: walledgarden@cityandguilds.com
Employer	T: +44 (0)2072948128
Employer solutions including, Employer Recognition: Endorsement, Accreditation and Quality Mark, Consultancy, Mapping and Specialist Training Delivery	E: business@cityandguilds.com
Publications	T: +44 (0)844 5430000
Logbooks, Centre documents, Forms, Free literature	F: +44 (0)20 72942413
Every effort has been made to ensure that the information contained in this publication is true and correct at the time of going to press. However, City \& Guilds' products and services are subject to continuous development and improvement and the right is reserved to change products and services from time to time. City \& Guilds cannot accept liability for loss or damage arising from the use of information in this publication.	
f you have a complaint, or any suggestions for improver provide, email: feedbackandcomplaints@cityandgui	ent about any of the services that we ds.com

Intentionally blank page

About City \& Guilds

As the UK's leading vocational education organisation, City \& Guilds is leading the talent revolution by inspiring people to unlock their potential and develop their skills. We offer over 500 qualifications across 28 industries through 8500 centres worldwide and award around two million certificates every year. City \& Guilds is recognised and respected by employers across the world as a sign of quality and exceptional training.

City \& Guilds Group

The City \& Guilds Group operates from three major hubs: London (servicing Europe, the Caribbean and Americas), Johannesburg (servicing Africa), and Singapore (servicing Asia, Australia and New Zealand). The Group also includes the Institute of Leadership \& Management (management and leadership qualifications), City \& Guilds Licence to Practice (land-based qualifications), the Centre for Skills Development (CSD works to improve the policy and practice of vocational education and training worldwide) and Learning Assistant (an online e-portfolio).

Copyright

The content of this document is, unless otherwise indicated, © The City and Guilds of London Institute and may not be copied, reproduced or distributed without prior written consent. However, approved City \& Guilds centres and candidates studying for City \& Guilds qualifications may photocopy this document free of charge and/or include a PDF version of it on centre intranets on the following conditions:

- centre staff may copy the material only for the purpose of teaching candidates working towards a City \& Guilds qualification, or for internal administration purposes
- candidates may copy the material only for their own use when working towards a City \& Guilds qualification

The Standard Copying Conditions (see the City \& Guilds website) also apply.

Please note: National Occupational Standards are not © The City and Guilds of London Institute. Please check the conditions upon which they may be copied with the relevant Sector Skills Council. Published by City \& Guilds, a registered charity established to promote education and training

City \& Guilds

1 Giltspur Street
London EC1A 9DD
T +44 (0)844 5430000
F +44 (0)20 72942413
www.cityandguilds.com

[^0]: Range
 Legislation
 Health and Safety at Work (1974), Data Protection Act, copyright

 ## Common injuries

 Eye strain, back / neck strain, RSI

