

8730-031

T Level Technical Qualification(s) in Engineering and Manufacturing (Level 3)

Core: Exam paper 1

Formula sheet

Do not write your answers in this booklet as it will not be marked. All answers should be written in the space provided on the question paper.

SOURCE DOCUMENT

Please DO NOT return to City & Guilds. Destroy this document locally.

Note that you may not require every formula on this sheet to answer the questions, and you may require additional formulae not presented here.

Pythagoras theorem	$a^2 + b^2 = c^2$		
Trigonometric functions	$\sin \theta = \frac{opposite}{hypotenuse}$		
	$\cos \theta = \frac{adjacent}{hypotenuse}$		
	$tan \theta = \frac{opposite}{adjacent}$		
Trigonometric identities	$\tan\theta = \frac{\sin\theta}{\cos\theta}$		
	$\cot \theta = \frac{1}{\tan \theta}$		
	$\sec\theta = \frac{1}{\cos\theta}$		
	$cosec \ \theta = \frac{1}{\sin \theta}$		
Sine rule	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$		
Cosine rule	$a^2 = b^2 + c^2 - 2bc \cos A$		
	$b^2 = a^2 + c^2 - 2ac\cos B$		
	$c^2 = a^2 + b^2 - 2ab\cos C$		
Standard derivatives	ax^n anx^{n-1}		
	$\sin ax \qquad a\cos ax$		
	$\cos ax -a \sin ax$		
	$\tan x \qquad sec^2x$		
Standard integrals	$ax^n \qquad \frac{ax^{n+1}}{n+1} + c \text{ where } n \neq 1$		
	$\sin ax \qquad \frac{-1}{a}\cos ax + c$		
	$\cos ax = \frac{1}{a}\sin ax + c$		
	$\tan x - \ln \cos x + c$		
Simple shapes	Surface area	Volume	
Rectangular solid	2lw + 2hw + 2lh	lwh	
Cylinder	$2\pi r^2 + 2\pi rh$	$\pi r^2 h$	
Sphere	$4\pi r^2$	$\frac{4}{3}\pi r^3$	
Cone	$\pi rs + \pi r^2$	$\frac{\pi r^2 h}{3}$	

Quadratic equation		$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
Graphs		y = mx + c	
Arithmetic progression		$a_n = a + (n-1)d$	
Geometric progression		$a_n = ar^{n-1}$	
Statistics	istics Mean value $\bar{x} = \frac{\Sigma(x)}{n}$		
	Standard deviation	$\sigma = \sqrt{\frac{\sum (x - \bar{x})^2}{n}}$	
Pressure		$P = \frac{F}{A}$	
Hydrostatic thrust		$F = \rho g A x$	
Bernoulli's equation		$P + \frac{1}{2}\rho v^2 + \rho g h = constant$	
Specific heat		$Q = m c \Delta t$	
Latent heat		Q = mh	
Thermal expansion		$\Delta L = \alpha L \Delta t$	
Polar to cartesian conversion		$x = r \cos\theta$	
		$y = r \sin\theta$	
Potential energy		PE = mgh	
Kinetic energy		$KE = \frac{1}{2}mv^2$	
Stress		$\sigma = \frac{F}{A}$	
Strain		$\varepsilon = \frac{\Delta L}{L}$	
Young's modulus		$E = \frac{\sigma}{\varepsilon}$	
Gas laws	Boyle's Law	$P_1V_1 = P_2V_2$	
	Charles' Law	$\frac{V_1}{T_1} = \frac{V_2}{T_2}$	
	General gas equation	$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$	
	Characteristic gas equation	pV = mRT	
Resistance in series		$R_T = R_1 + R_2$	
Resistance in parallel		$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2}$	
Capacitance in series		$\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2}$	
Capacitance in parallel		$C_T = C_1 + C_2$	
Electrical theory		Ohm's law $V = IR$	
		P = IV	