T Level Technical Qualification(s) in Engineering and Manufacturing (Level 3)

Core: Exam paper 1
Formula sheet

Do not write your answers in this booklet as it will not be marked. All answers should be written in the space provided on the question paper.

SOURCE DOCUMENT

Please DO NOT return to City \& Guilds.

 Destroy this document locally.Note that you may not require every formula on this sheet to answer the questions, and you may require additional formulae not presented here.

Pythagoras theorem	$a^{2}+b^{2}=c^{2}$	
Trigonometric functions	$\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}$	
	$\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}$	
	$\tan \theta=\frac{\text { opposite }}{\text { adjacent }}$	
Trigonometric identities	$\tan \theta=\frac{\sin \theta}{\cos \theta}$	
	$\cot \theta=\frac{1}{\tan \theta}$	
	$\sec \theta=\frac{1}{\cos \theta}$	
	$\operatorname{cosec} \theta=\frac{1}{\sin \theta}$	
Sine rule	$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$	
Cosine rule	$a^{2}=b^{2}+c^{2}-2 b c \cos A$	
	$b^{2}=a^{2}+c^{2}-2 a c \cos B$	
	$c^{2}=a^{2}+b^{2}-2 a b \cos C$	
Standard derivatives	$a x^{n} \quad a n x^{n-1}$	
	$\sin a x \quad a \cos a x$	
	$\cos a x \quad-a \sin a x$	
	$\tan x \quad \sec ^{2} x$	
Standard integrals	$a x^{n} \quad \frac{a x^{n+1}}{n+1}+c \text { where } n \neq 1$	
	$\sin a x \quad \frac{-1}{a} \cos a x+c$	
	$\cos a x \quad \frac{1}{a} \sin a x+c$	
	$\tan x \quad-\ln \cos x+c$	
Simple shapes	Surface area	Volume
Rectangular solid	$2 l w+2 h w+2 l h$	$l w h$
Cylinder	$2 \pi r^{2}+2 \pi r h$	$\pi r^{2} h$
Sphere	$4 \pi r^{2}$	$\frac{4}{3} \pi r^{3}$
Cone	$\pi r s+\pi r^{2}$	$\frac{\pi r^{2} h}{3}$

Quadratic equation		$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Graphs		$y=m x+c$
Arithmetic progression		$a_{n}=a+(n-1) d$
Geometric progression		$a_{n}=a r^{n-1}$
Statistics	Mean value	$\bar{x}=\frac{\sum(x)}{n}$
	Standard deviation	$\sigma=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}}$
Pressure		$P=\frac{F}{A}$
Hydrostatic thrust		$F=\rho g A x$
Bernoulli's equation		$P+\frac{1}{2} \rho v^{2}+\rho g h=\text { constant }$
Specific heat		$Q=m c \Delta t$
Latent heat		$Q=m h$
Thermal expansion		$\Delta L=\alpha L \Delta t$
Polar to cartesian conversion		$x=r \cos \theta$
		$y=r \sin \theta$
Potential energy		$P E=m g h$
Kinetic energy		$K E=\frac{1}{2} m v^{2}$
Stress		$\sigma=\frac{F}{A}$
Strain		$\varepsilon=\frac{\Delta L}{L}$
Young's modulus		$E=\frac{\sigma}{\varepsilon}$
Gas laws	Boyle's Law	$P_{1} V_{1}=P_{2} V_{2}$
	Charles' Law	$\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$
	General gas equation	$\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
	Characteristic gas equation	$p V=m R T$
Resistance in series		$R_{T}=R_{1}+R_{2}$
Resistance in parallel		$\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$
Capacitance in series		$\frac{1}{C_{T}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}$
Capacitance in parallel		$C_{T}=C_{1}+C_{2}$
Electrical theory		Ohm's law $V=I R$
		$P=I V$

