Level 5 Advanced Technician Diploma in Civil Engineering (9208-13)

April 2020 Version 1
Qualification at a glance

<table>
<thead>
<tr>
<th>Subject area</th>
<th>Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>City & Guilds number</td>
<td>9208-13</td>
</tr>
<tr>
<td>Age group approved</td>
<td>18+</td>
</tr>
<tr>
<td>Entry requirements</td>
<td>N/A</td>
</tr>
<tr>
<td>Assessment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Centre set and marked assignment</td>
</tr>
<tr>
<td></td>
<td>Externally set, internally marked assignments</td>
</tr>
<tr>
<td></td>
<td>Dated written papers</td>
</tr>
<tr>
<td>Fast track</td>
<td>N/A</td>
</tr>
<tr>
<td>Support materials</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualification handbook</td>
</tr>
<tr>
<td>Registration and</td>
<td></td>
</tr>
<tr>
<td>certification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consult the Walled Garden/Online Catalogue for last dates</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title and level</th>
<th>GLH</th>
<th>TQT</th>
<th>City & Guilds number</th>
<th>Accreditation number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 5 Advanced Technician Diploma in Civil Engineering</td>
<td>375</td>
<td>563</td>
<td>9208-13</td>
<td>N/A</td>
</tr>
<tr>
<td>Version and date</td>
<td>Change detail</td>
<td>Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1 April 2020</td>
<td>Document created</td>
<td>Throughout</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contents

1. Introduction ... 5
2. Structure .. 6
3. Centre requirements .. 8
 - Approval .. 8
 - Resource requirements .. 8
 - Learner entry requirements 9
4. Delivering the qualification 10
 - Initial assessment and induction 10
5. Assessment .. 11
 - Test specifications .. 13
6. Grade profile .. 15
7. Units .. 18
 - Unit 422 Personal and Professional Development 19
 - Unit 504 Project Management 22
 - Unit 520 Advanced Mathematics for Civil Engineering 25
 - Unit 521 Design of Structural Elements 30
 - Unit 522 Integrated Civil Engineering Design Project 33
 - Unit 523 Advanced Surveying Technology 36
 - Unit 524 Environmental Water Engineering 39
 - Unit 525 Transport Engineering 43
 - Unit 526 Measurement, Costing and Contracts for Civil Engineers 47
 - Unit 527 Pavement Design 50
 - Unit 528 Concrete Design 54
 - Unit 529 Sustainable Development 57
Appendix 1 Sources of general information 59
1 Introduction

This document tells you what you need to do to deliver the qualification:

<table>
<thead>
<tr>
<th>Area</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who is the qualification for?</td>
<td>It for learners who work or want to work as Civil Engineers in the Engineering sector</td>
</tr>
<tr>
<td>What opportunities for progression are there?</td>
<td>It allows learners to progress into employment or to the following City & Guilds qualifications:</td>
</tr>
<tr>
<td></td>
<td>• Level 6 Graduate Diploma in Civil Engineering</td>
</tr>
<tr>
<td></td>
<td>• Level 7 Post Graduate Diploma in Civil Engineering</td>
</tr>
</tbody>
</table>
2 Structure

To achieve the **Level 5 Advanced Technician Diploma in Civil Engineering** learners must achieve all **three** mandatory units and **four** optional units.

<table>
<thead>
<tr>
<th>City & Guilds unit number</th>
<th>Unit title</th>
<th>Unit Level</th>
<th>GLH</th>
<th>NLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory units</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 520</td>
<td>Advanced Mathematics for Civil Engineering</td>
<td>5</td>
<td>60</td>
<td>200</td>
</tr>
<tr>
<td>Unit 521</td>
<td>Design of Structural Elements</td>
<td>5</td>
<td>60</td>
<td>200</td>
</tr>
<tr>
<td>Unit 522</td>
<td>Integrated Civil Engineering Design Project</td>
<td>5</td>
<td>60</td>
<td>200</td>
</tr>
<tr>
<td>Optional units</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 422</td>
<td>Personal and Professional Development</td>
<td>4</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>Unit 504</td>
<td>Project Management</td>
<td>5</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>Unit 523</td>
<td>Advanced Surveying Technology</td>
<td>5</td>
<td>60</td>
<td>200</td>
</tr>
<tr>
<td>Unit 524</td>
<td>Environmental Water Engineering</td>
<td>5</td>
<td>60</td>
<td>200</td>
</tr>
<tr>
<td>Unit 525</td>
<td>Transport Engineering</td>
<td>5</td>
<td>60</td>
<td>200</td>
</tr>
<tr>
<td>Unit 526</td>
<td>Measurement, Costing and Contracts for Civil Engineers</td>
<td>5</td>
<td>60</td>
<td>200</td>
</tr>
</tbody>
</table>
City & Guilds Unit Title

<table>
<thead>
<tr>
<th>City & Guilds unit number</th>
<th>Unit title</th>
<th>Unit Level</th>
<th>GLH</th>
<th>NLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 527</td>
<td>Pavement Design</td>
<td>5</td>
<td>60</td>
<td>200</td>
</tr>
<tr>
<td>Unit 528</td>
<td>Concrete Design</td>
<td>5</td>
<td>60</td>
<td>200</td>
</tr>
<tr>
<td>Unit 529</td>
<td>Sustainable Development</td>
<td>5</td>
<td>60</td>
<td>200</td>
</tr>
</tbody>
</table>

Total Qualification Time

Total Qualification Time (TQT) is the total amount of time, in hours, expected to be spent by a Learner to achieve a qualification. It includes both guided learning hours (which are listed separately) and hours spent in preparation, study and assessment.

<table>
<thead>
<tr>
<th>Title and level</th>
<th>GLH</th>
<th>TQT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 5 Advanced Technician Diploma in Civil Engineering</td>
<td>375</td>
<td>563</td>
</tr>
</tbody>
</table>
3 Centre requirements

Approval
If there is no fast track approval for this qualification, existing centres who wish to offer this qualification must use the standard Qualification Approval Process.

Resource requirements

Physical resources and site agreements
The equipment, systems and machinery must meet industrial standards and be capable of being used under normal working conditions.

Centre staffing
Staff delivering this qualification must be able to demonstrate that they meet the following occupational expertise requirements. They should:

- be occupationally competent or technically knowledgeable in the areas for which they are delivering training and experience of providing training. This knowledge must be to the same level as the training being delivered
- Trainers must hold or be working towards a recognised training qualification.
- have recent relevant experience in the specific area they will be assessing
- have credible experience of providing training.

Centre staff may undertake more than one role, eg tutor and assessor or internal quality assurer, but cannot internally verify their own assessments.

Assessors and Internal Quality Assurer

Assessors
Although not specifically required for this qualification, City & Guilds recommends that Assessors hold, or are working towards, the relevant Level 3 TAQA qualification, covering the assessment types required for this qualification. Further information about the City & Guilds TAQA qualification can be found at www.cityandguilds.com. Assessors must be able to demonstrate clear experience in assessing learning and understand City & Guilds’ quality assurance requirements. They must also have the required industry certification and experience as outlined above.

Internal Verifiers / Internal Quality Assurers
Although not specifically required for this qualification, City & Guilds recommends that Internal Verifiers / Internal Quality Assurers hold, or are working towards, the Level 4 TAQA qualification. Further information about the City & Guilds TAQA qualification can be found at
Internal Verifiers / Internal Quality Assurers must be able to demonstrate clear experience in quality assurance processes and understand City & Guilds’ specific quality assurance requirements. They must also have the required industry certification and experience as outlined above.

Continuing professional development (CPD)
Centres must support their staff to ensure that they have current knowledge of the occupational area, that delivery, mentoring, training, assessment and verification is in line with best practice, and that it takes account of any national or legislative developments.

Learner entry requirements
Learners should already hold the Level 4 Diploma in Civil Engineering or equivalent in order to complete the qualification satisfactorily.

Age restrictions
City & Guilds cannot accept any registrations for learners under 18.
4 Delivering the qualification

Initial assessment and induction
An initial assessment of each learner should be made before the start of their programme to identify:
- if the learner has any specific training needs,
- support and guidance they may need when working towards their qualification.
- any units they have already completed, or credit they have accumulated which is relevant to the qualification.
- the appropriate type and level of qualification.

We recommend that centres provide an induction programme so the learner fully understands the requirements of the qualification, their responsibilities as a learner, and the responsibilities of the centre. This information can be recorded on a learning contract.
5 Assessment

City & Guilds has written the following assessments to use with this qualification:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Title</th>
<th>Assessment method</th>
<th>Where to obtain assessment materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>422</td>
<td>Personal and Professional Development</td>
<td>Assignment set by City & Guilds, internally marked, externally verified</td>
<td>www.cityandguilds.com</td>
</tr>
<tr>
<td>504</td>
<td>Project Management</td>
<td>Assignment set by City & Guilds, internally marked, externally verified</td>
<td>www.cityandguilds.com</td>
</tr>
<tr>
<td>520</td>
<td>Advanced Mathematics for Civil Engineering</td>
<td>Dated entry written exam paper</td>
<td>Question papers ordered via Walled Garden</td>
</tr>
<tr>
<td>521</td>
<td>Design of Structural Elements</td>
<td>Assignment set by City & Guilds, internally marked, externally verified</td>
<td>www.cityandguilds.com</td>
</tr>
<tr>
<td>522</td>
<td>Integrated Civil Engineering Design Project</td>
<td>Assignment set by City & Guilds, internally marked, externally verified</td>
<td>www.cityandguilds.com</td>
</tr>
<tr>
<td>523</td>
<td>Advanced Surveying Technology</td>
<td>Assignment set by City & Guilds, internally marked, externally verified</td>
<td>www.cityandguilds.com</td>
</tr>
<tr>
<td>524</td>
<td>Environmental Water Engineering</td>
<td>Dated entry written exam paper</td>
<td>Question papers ordered via Walled Garden</td>
</tr>
<tr>
<td>Unit</td>
<td>Title</td>
<td>Assessment method</td>
<td>Where to obtain assessment materials</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>--</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>525</td>
<td>Transport Engineering</td>
<td>Assignment set by City & Guilds, internally marked, externally verified</td>
<td>www.cityandguilds.com</td>
</tr>
<tr>
<td>526</td>
<td>Measurement, Costing and Contracts for Civil Engineers</td>
<td>Assignment set by City & Guilds, internally marked, externally verified</td>
<td>www.cityandguilds.com</td>
</tr>
<tr>
<td>527</td>
<td>Pavement Design</td>
<td>Assignment set by City & Guilds, internally marked, externally verified</td>
<td>www.cityandguilds.com</td>
</tr>
<tr>
<td>528</td>
<td>Concrete Design</td>
<td>Assignment set by City & Guilds, internally marked, externally verified</td>
<td>www.cityandguilds.com</td>
</tr>
<tr>
<td>529</td>
<td>Sustainable Development</td>
<td>Assignment set by City & Guilds, internally marked, externally verified</td>
<td>www.cityandguilds.com</td>
</tr>
</tbody>
</table>
Test specifications

The way the knowledge is covered by each test is laid out in the tables below:

Test: Unit 520 Advanced Mathematics for Civil Engineering
Duration: 3 hours
Grading: Pass/Merit/Distinction

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Number of marks</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Be able to use matrix algebra to solve civil engineering problems</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>2 Be able to use vectors methods to solve civil engineering problems</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>3 Be able to use differential and integral calculus to solve civil engineering problems</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>4 Be able to apply numerical analysis to solve civil engineering problems</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>5 Understand forms of statistical distribution</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6 Be able to use statistical tests</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>7 Be able to use linear regression techniques</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Test: Unit 524 Environmental Water Engineering
Duration: 3 hours
Grading: Pass/Merit/Distinction

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Number of marks</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Understand legislation governing water and wastewater</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>2 Know how to identify the nature of sewage and sewerage systems</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>3 Be able to identify sewage and sewerage systems</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>4 Understand water treatment</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>5 Understand the principles of wastewater treatment</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
Time constraints

The following time constraints must be applied to the assessments of this qualification:

- each assignment has suggested durations; please refer to the individual assignments and to the Assessor Guidance. Centre staff should guide learners to ensure excessive evidence gathering is avoided. Centres finding that assignments are taking longer, should contact the Qualification consultant for guidance
- all assignments must be completed and assessed within the learner’s period of registration. Centres should advise learners of any internal timescales for the completion and marking of individual assignments
- all dated entry written exam papers must be sat within the learner’s period of registration.

Assessment strategy

City & Guilds provide sample questions for each unit assessed by dated entry written exam paper.

The purpose of these sample questions is to provide examples of the type of question that will be set, giving an indication of the breadth and depth of knowledge that is expected. It should be noted that these are sample questions and not a full sample question paper.

Dated entry examinations will take place in June and December.

Recognition of prior learning (RPL)

Recognition of prior learning means using a person’s previous experience or qualifications which have already been achieved to contribute to a new qualification.

RPL is not allowed for this qualification.
6 Grade profile

Purpose and use of this qualification grade profile

City & Guilds has taken the decision to grade the individual assessments included in this qualification, and provide a grade associated with each unit. This decision is based on market research with employers and colleges that suggests grading can be of use both as a motivational tool within the learning environment, and also to learners presenting evidence of their skills to prospective employers.

For this reason, the tasks have been developed to extend learners beyond the minimum required for Pass. As a basis for developing the tasks and their related grading criteria, City & Guilds consulted a number of stakeholders to discover what the grades at each level should mean in practice, and how they might be used. The following descriptors are based on that consultation.

The descriptors were used in the development of the task grading criteria and should be used by assessors to understand the intended outcomes of the grading.

They should be referred to during the centre’s standardising exercises in addition to the specific grading criteria for the unit to support a consistent understanding of the standard across units, centres and assessors. The grades achieved by a learner would be considered by universities for subsequent entry into the correct year of a degree programme.

Levels

Level 4

The Level 4 Diplomas in Civil Engineering focus on advanced engineering. The learners will have the potential to fulfil a role within Engineering that requires a high level of responsibility, for example within first level management, requiring the use of personal initiative and critical judgement.

Holders of these qualifications may also be able to advance into the second year of a selected university engineering degree programme.

Level 5

The Level 5 Advanced Technician Diplomas in Civil Engineering focus on advanced engineering. The learner will have the potential to fulfil a role within Engineering that requires a high level of responsibility, for example leading to middle management and/or project management, requiring the use of personal initiative and critical judgement.

Holders of these qualifications may also be able to advance into the third year of a selected university engineering degree programme.

To take this qualification a learner must first achieve the 9208 Level 4 Diploma in Civil Engineering.

Delivery of learning

Learning is delivered by approved colleges and training providers in simulated learning environments, not in the workplace. Learners will however have access to real work environments in which to further develop the breadth of their skills and their experience.
Grading

The majority of tasks are graded Pass / Merit / Distinction. Pass reflects the minimum requirements that are expressed in the unit, with Merit and Distinction showing progression in skills and knowledge as well as recognising behaviours important to the industry.

<table>
<thead>
<tr>
<th>Pass</th>
<th>Merit</th>
<th>Distinction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 4</td>
<td>Learner: Capable of making informed decisions, likely to have achieved a grade at Level 3 (Merit / Distinction), starting to have sufficient skills to bring value to the industry, is becoming comfortable with occupational systems and procedures. Evidence: Complex tasks may present some challenge, partial attempt at assessment, well defined tasks completed with a level of guidance, able to follow the required process, acceptable skills / knowledge / competence displayed for the industry, can plan, can solve problems. Limited reflection on the outcomes of the task.</td>
<td>Learner: Broader understanding of systems and procedures, can work with minimal guidance, determination to resolve issues, taking ownership and responsibility for own learning, desire to progress. Evidence: Full attempt at assessment, well defined tasks completed with minimal guidance, able to follow the required process, higher level skills / knowledge / competence displayed for the industry, can plan, can solve problems more effectively and confidently. Sufficient reflection on the outcomes of the task.</td>
</tr>
<tr>
<td>Level 5</td>
<td>Pass</td>
<td>Merit</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Learner:</td>
<td>Capable of making informed decisions, likely to have achieved a grade at Level 4 (Merit / Distinction), has sufficient skills to bring value to the industry, is fairly comfortable with occupational systems and procedures.</td>
<td>Learner:</td>
</tr>
<tr>
<td>Evidence:</td>
<td>Complex tasks may present some challenge, but most assessments attempted, well defined tasks completed with a level of guidance, able to follow the required process, acceptable skills / knowledge / competence displayed for the industry, can plan, can solve problems. Satisfactory reflection on the outcomes of the task.</td>
<td>Evidence:</td>
</tr>
</tbody>
</table>
7 Units

Structure of units
These units each have the following:
• City & Guilds reference number
• title
• level
• guided learning hours
• notional learning hours
• unit aim
• information on assessment
• learning outcomes which are comprised of a number of assessment criteria
• notes for guidance.
Unit 422 Personal and Professional Development

Level: 4
GLH: 25
Assessment method: Assignment

Aim: The purpose of this unit is to enable learners to develop an understanding of the different methods and resources available to them for planning their personal and professional development.

They will learn how to identify factors that may affect targets or goals, prioritise actions and understand how feedback from others can be utilised to aid their development and career progression. They will be able to develop a plan which can either be used during progress of a course of study or as a tool in their future careers.

<table>
<thead>
<tr>
<th>Learning outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner will:</td>
</tr>
<tr>
<td>1. understand how to plan for personal and professional development</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner can:</td>
</tr>
<tr>
<td>1.1 describe the benefits of personal and professional development</td>
</tr>
<tr>
<td>1.2 identify development opportunities for career and personal progression</td>
</tr>
<tr>
<td>1.3 analyse development opportunities that may support career and personal progression.</td>
</tr>
</tbody>
</table>
Range

Benefits
personal - update skills, gain new skills, increase motivation, confidence
professional - career progression, meeting organisation goals, how role fits into organisation

Development opportunities
- internal and external
- skills: inter-personal, enterprise, self-management and leadership
- knowledge: qualifications

Learning outcome
The learner will:
2. understand how people learn

Assessment criteria
The learner can:
2.1 explain the principles of how people learn
2.2 describe different learning styles
2.3 evaluate learning resources to support development
2.4 analyse the use of different learning strategies.

Range

Principles
relevant theories, methodologies, pedagogies, codes of ethics

Learning styles
visual, aural, physical, logical, social, solitary

Learning resources
libraries, organisation’s resources, IT, internet, progress files, portfolio development

Learning strategies
awareness of personal style e.g. activist, pragmatist, theorist, reflector, interactions with others, taking responsibility for own development, effective time-management, structured reflection

Learning outcome
The learner will:
3. be able to produce personal and professional development plans

Assessment criteria
The learner can:
3.1 carry out self-audit of skills and experience
3.2 identify targets for personal and professional development
3.3 use methods to track personal development
3.4 create a personal and professional development plan.
<table>
<thead>
<tr>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-audit</td>
</tr>
<tr>
<td>personal reflections, feedback from others; skills scan; revisiting job role</td>
</tr>
<tr>
<td>Targets</td>
</tr>
<tr>
<td>SMART target setting, responding to feedback, realigning targets, addressing strengths and weaknesses</td>
</tr>
<tr>
<td>Methods</td>
</tr>
<tr>
<td>task manager, blog, project management tools, diaries, performance review/plan, objectives, monitoring, reflecting and planning</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner will:</td>
</tr>
<tr>
<td>4. be able to make recommendations for personal and professional development</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner can:</td>
</tr>
<tr>
<td>4.1 explain the benefits of reflective practice</td>
</tr>
<tr>
<td>4.2 evaluate progress against development plan</td>
</tr>
<tr>
<td>4.3 recommend opportunities for further development.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefits</td>
</tr>
<tr>
<td>extent to which targets have been met/not met, recognise any changes in expectations; suggest further support required, identify barriers to progress</td>
</tr>
<tr>
<td>Progress</td>
</tr>
<tr>
<td>the learner should regularly identify progress against original plan and refine plan accordingly</td>
</tr>
</tbody>
</table>
Unit 504 Project Management

Level: 5
GLH: 50
Proposed assessment method: Assignment

Aim: The purpose of this unit is to enable learners to develop an understanding of the principles of project management in civil engineering and how projects are set up. Learners will gain an understanding of how to mitigate risks and how to develop management skills to monitor and review civil engineering projects.

Learning outcome
The learner will:
1. understand why organisations use project management

Assessment criteria
The learner can:
1.1 describe the principles of project management
1.2 explain the benefits of project management to organisations and individuals.

Range
Principles
application of technical knowledge to project management; leadership; delegation; negotiation; decision-making; defined roles and responsibilities; management by stages; management by exception; focus on outcomes; determination of objectives; recognition of constraints; lifecycle planning; ethical and professional issues; learning from experience; application of project management principles to civil engineering projects

Benefits
increased efficiency; better understanding of client brief; enhanced communication with main contractor and sub-contractors; improved client satisfaction; more effective delivery of project outcomes; improvements in quality and output; better development opportunities within the project team; increase in competitive edge; opportunities to expand work done; greater flexibility; improved risk assessment.
<table>
<thead>
<tr>
<th>Learning outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner will:</td>
</tr>
<tr>
<td>understand how to set up projects</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner can:</td>
</tr>
<tr>
<td>2.1 explain the considerations that apply when reviewing project proposals</td>
</tr>
<tr>
<td>2.2 explain how to set clear goals for projects</td>
</tr>
<tr>
<td>2.3 analyse project resource requirements</td>
</tr>
<tr>
<td>2.4 explain how roles and responsibilities are allocated within project teams</td>
</tr>
<tr>
<td>2.5 identify project communication needs</td>
</tr>
<tr>
<td>2.6 assess possible risks to successful completion of projects</td>
</tr>
<tr>
<td>2.7 explain how to mitigate possible risks.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Considerations</td>
</tr>
<tr>
<td>financial, legal, technical, environmental, resource, time and budget constraints; dependencies; confidentiality; access to data and project documentation</td>
</tr>
<tr>
<td>How to set clear goals</td>
</tr>
<tr>
<td>co-ordinate and control design and construction; identify stakeholders needs; record goals in project plans; agree contractual relationships with client, design team, construction team and project manager; clarify powers, authority, responsibilities and accountability; define project requirements against identified goals</td>
</tr>
<tr>
<td>Resource requirements</td>
</tr>
<tr>
<td>allocate budget for design costs, labour, materials and construction plant; consider training needs, communication needs and IT requirements; management contracts and the use of subcontractors</td>
</tr>
<tr>
<td>How roles and responsibilities are allocated</td>
</tr>
<tr>
<td>identify expertise from different areas (design, construction, procurement, health and safety); analyse roles of key stakeholders; identify training and development needs; schedule meetings and reports</td>
</tr>
<tr>
<td>Communication needs</td>
</tr>
<tr>
<td>formal/informal communication; identifying who requires communication, e.g. stakeholders, client, management, design team, project realisation team, suppliers, local authority, statutory bodies</td>
</tr>
<tr>
<td>Possible risks</td>
</tr>
<tr>
<td>safety issues; optimistic time and cost estimates; unexpected budget costs; unclear roles and responsibilities; stakeholder needs neither sought nor addressed; changing requirements after the start of the project; new requirements; poor communication; lack of commitment.</td>
</tr>
<tr>
<td>Mitigate</td>
</tr>
<tr>
<td>Use of quality assurance techniques, environmental assessments, risk assessment, soil and material testing, regular project review meetings, appropriate communication and targeted training.</td>
</tr>
</tbody>
</table>
Learning outcome

The learner will:
- be able to use management tools to maintain, control and monitor projects

Assessment criteria

The learner can:
- 3.1 describe different **management tools** for monitoring and control of projects
- 3.2 justify the use of management tools for monitoring and controlling projects
- 3.3 use management tools to **monitor** projects.

Range

Management tools
method statements; Gantt charts; precedence diagrams; Critical Path Analyses; lines of balance; time-change diagrams; budget monitoring reports; use of relevant and **current** project software packages

Monitor
update task status; progress of work; re-schedule incomplete tasks as necessary; update project elements; review budgets; coordinate and control subcontractors and suppliers.

Learning outcome

The learner will:
- 4. be able to review projects at all stages

Assessment criteria

The learner can:
- 4.1 explain **reasons** for reviewing projects after completion
- 4.2 review projects against original proposals.

Range

Reasons
to continuously improve design and project realisation; to learn from experience; to identify key resources for future projects; to monitor achievement against original objectives; to highlight issues e.g. health and safety, supply problems, training needs, unforeseen increases in costs, to allow revision and updating of plans, to complete end of project report and facilitate final account.
Unit 520
Advanced Mathematics for Civil Engineering

Level: 5
GLH: 60
Proposed assessment method: Dated written paper

Aim:
The purpose of this unit is to enable learners to develop knowledge and understanding of advanced mathematical techniques and be able to apply analytical skills to the solution of civil engineering problems. The knowledge and skills developed are used by other units in the qualification and they also provide a sound basis for extending the study of engineering to a higher level if desired. On completion of this unit, learners will be able to:

- use matrix algebra methods to describe and solve engineering problems
- use vector methods of analysis to solve engineering problems
- use calculus to model and solve engineering problems
- use numerical analysis techniques to solve engineering problems
- carry out statistical tests.

Learning outcome
The learner will:
1. be able to use matrix algebra to solve civil engineering problems

Assessment criteria
The learner can:
1.1 perform operations in matrix algebra
1.2 evaluate the determinants of a matrix
1.3 solve simultaneous equations using Cramer’s rule
1.4 obtain the inverse of a square matrix
1.5 apply Gaussian elimination to solve simultaneous equations
1.6 apply matrix algebra to solve engineering problems described by sets of simultaneous equations.
Learning outcome

The learner will:

2. be able to use vectors methods to solve civil engineering problems

Assessment criteria

The learner can:

2.1 perform operations with vectors
2.2 solve civil engineering problems using vectors.

Range

Operations

- vector addition, scalar multiplication
- obtain scalar and vector products of two vectors
- obtain the vector equation of a line and a plane

Learning outcome

The learner will:

3. be able to use differential and integral calculus to solve civil engineering problems

Assessment criteria

The learner can:

3.1 determine first and higher order derivatives of functions
3.2 use differential calculus to solve problems
3.3 determine indefinite and definite integrals of algebraic and trigonometric functions and differential equations
3.4 use integral calculus to solve problems.

Range

Functions

- algebraic, trigonometric, logarithmic

Differential calculus

- product rule; quotient rule; chain rule; maximum and minimum values of a function; points of inflection

Integrals
indefinite integrals; table of integrals for common functions (constant, \(ax^n\) \(n \neq -1\), \(1/x\), \(\sin(ax \pm b)\), \(\cos(ax \pm b)\), \(e^{ax \pm b}\)); definite integrals; Integration methods: integration by parts; by substitution; using partial fractions

Problems
applications of integration to areas; volumes of revolution; centres of mass; moments of inertia

<table>
<thead>
<tr>
<th>Learning outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner will:</td>
</tr>
<tr>
<td>4. be able to apply numerical analysis to solve civil engineering problems.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner can:</td>
</tr>
<tr>
<td>4.1 use numerical iterative methods to find the roots of a function</td>
</tr>
<tr>
<td>4.2 apply numerical methods of integration to engineering variables</td>
</tr>
<tr>
<td>4.3 apply numerical methods for the solution of ordinary differential equation models</td>
</tr>
<tr>
<td>4.4 apply iterative numerical methods to the solution of partial differential equation models.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iterative methods</td>
</tr>
<tr>
<td>Bisection method; Newton's method</td>
</tr>
<tr>
<td>Numerical methods of integration</td>
</tr>
<tr>
<td>Trapezoidal rule; Simpson's rule;</td>
</tr>
<tr>
<td>Numerical methods</td>
</tr>
<tr>
<td>Euler and improved Euler; Taylor series</td>
</tr>
<tr>
<td>Iterative numerical methods</td>
</tr>
<tr>
<td>Finite difference methods for partial differential equations; solution of sets of linear equations by Jacobi iterative method; Gauss-Seidel iterative method</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner will:</td>
</tr>
<tr>
<td>5. understand forms of statistical distribution</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner can:</td>
</tr>
<tr>
<td>5.1 explain the uses of statistical distribution</td>
</tr>
<tr>
<td>5.2 explain the concept of degrees of freedom.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution</td>
</tr>
<tr>
<td>Normal, Chi squared, Poisson, binomial</td>
</tr>
<tr>
<td>Learning outcome</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>The learner will:</td>
</tr>
<tr>
<td>6. be able to use statistical tests</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner can:</td>
</tr>
<tr>
<td>6.1 perform statistical tests of difference</td>
</tr>
<tr>
<td>6.2 perform statistical tests of correlation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical tests of difference</td>
</tr>
<tr>
<td>Student-t for small samples, Chi squared</td>
</tr>
<tr>
<td>Statistical tests of correlation</td>
</tr>
<tr>
<td>Pearson’s product-moment ®, Spearman’s rank</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner will:</td>
</tr>
<tr>
<td>7. be able to use linear regression techniques</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner can:</td>
</tr>
<tr>
<td>7.1 perform regression techniques</td>
</tr>
<tr>
<td>7.2 make predictions using linear regression techniques.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
</tr>
<tr>
<td>linear, univariate, bivariate</td>
</tr>
</tbody>
</table>
Unit 520 Advanced Mathematics for Civil Engineering

Supporting information

Learning Outcome 3 is the same Learning Outcome 3 that appears in Unit 439 Applied Mathematics for Civil Engineering
Unit 521 Design of Structural Elements

<table>
<thead>
<tr>
<th>Level:</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLH:</td>
<td>60</td>
</tr>
<tr>
<td>Proposed assessment method:</td>
<td>Assignment</td>
</tr>
<tr>
<td>Aim: The purpose of this unit is to enable learners to develop an understanding of the factors that underpin the design of simple structural elements, and to use these to design structural elements in steel, reinforced concrete, masonry and timber, using codes of practice, design handbooks and computer software applications as appropriate.</td>
<td></td>
</tr>
</tbody>
</table>

Learning outcome

The learner will:

1. know the factors that affect the design of structural elements

Assessment criteria

The learner can:

1.1 identify the materials used for structural elements

1.2 describe the sources of information that provide guidance on factors that affect the use of materials.

Range

Materials
structural steel, reinforced concrete (RC), masonry, structural timber

Structural elements
beams (steel, reinforced concrete (RC), timber), columns (steel, reinforced concrete (RC), timber), reinforced concrete slabs (RC), walls (masonry)

Sources of information
standard codes of practice, design handbooks and software applications

Factors
loadings (dead, imposed, wind), pressures (earth, water), limit states, load factors, materials factors, design strengths, sectional properties, stability, durability, fire protection
Learning outcome

The learner will:
2. understand how the factors affect the design of structural elements

Assessment criteria

The learner can:
2.1 explain how the factors affect the design of steel beams, steel columns and slabs and built up bases
2.2 explain how the factors affect the design of reinforced concrete slabs, beams and columns
2.3 explain the factors that affect the design of masonry walls
2.4 explain the factors that affect the design of timber beams and columns.

Range

Factors
loadings (dead, imposed, wind), pressures (earth, water), limit states, load factors, materials factors, design strengths, sectional properties, stability, durability, fire protection

Steel beams
loadings, steel grades, ultimate bending stresses for degree of restraint, bending shear, deflection, bearing, web buckling

Steel columns
depth, effective length, radius of gyration, slenderness ratio, steel grades, ultimate load capacity

Slabs and built up bases
ground loadings, base size, base plates (thickness, holding down bolts, shaft end specification fillet welding, fire protection)

Reinforced concrete slabs
loadings, concrete (mixes, strength) steel (types, strength), bending, shear, deflection, curtailment, bond, steel area (max and min), slab details

Beams
reinforced concrete loadings, concrete (mixes, strength) steel (types, strength), bending, shear, deflection, bond, curtailment, steel areas (max and min), links, built up shear reinforcement

Columns
reinforced concrete braced members, influence of end condition, slenderness ratio limits (short columns), minimum eccentricity, steel reinforcement, steel areas (max and min), linker enforcement, column details

Masonry walls
solid: mortar strengths, restraints, effective length, effective height, effective width, slenderness ratio, capacity reduction factor, ultimate load capacity/metre
cavity: ultimate loadings, effective height, effective length, effective thickness, lateral support, slenderness ratio, capacity reduction factor, eccentricity ratio, ultimate load capacity/metre
Timber beams

Joists as beams: material (type, size, grading, associated strength), influence of ‘K’ factors, bending, shear, deflection, bearing

Columns

Struts in roofs and stud walls: timber grade, permissible compressive strength, end conditions, effective length, slenderness ratio, modification factor for compression, ratio of modulus of elasticity to compressive stress

Learning outcome

The learner will:

3. be able to design structural elements to agreed specifications

Assessment criteria

The Learner can:

3.1 design **steel beams** and **columns** to agreed specifications

3.2 design **slabs and built up bases** to agreed specifications

3.3 design **reinforced concrete slabs, beams** and **columns** to agreed specifications

3.4 carry out the design of **solid and cavity** masonry **walls** to agreed specifications

3.5 carry out the design of **timber joists** and **struts** to agreed specifications.

Range

Steel beams

restrained, unrestrained

Columns

universal columns; axial loads, eccentric loads

Slabs and built up bases

for axially loaded columns

Reinforced concrete slabs

solid slabs

Beams

reinforced concrete, singly reinforced

Columns

short columns, axial loads, eccentric loads

Solid walls

axially loaded

Cavity walls

eccentrically loaded

Timber joists

given loadings and span conditions

Struts

axially loaded, acting in typical roof truss or vertically in a stud wall, given length and end conditions
Unit 522
Integrated Civil Engineering Design Project

Level: 5
GLH: 60
Proposed assessment method: Assignment

Aim: To enable learners to apply the knowledge gained from units within Level 5 Civil Engineering learners are required to complete a suitable civil engineering derived project. Learners will be able to demonstrate they are able to

- develop a Civil Engineering project proposal
- scope the project
- set project objectives
- design solutions to meet project objectives
- present the project.

Learning outcome
The learner will:
1. be able to develop a Civil Engineering project proposal

Assessment criteria
The learner can:
1.1 investigate an area for development
1.2 propose project ideas.

Range
An area for development
processes, practices or structures
Learning outcome
The learner will:
2. be able to scope the project

Assessment criteria
The learner can:
2.1 plan roles and activities
2.2 formulate specifications with regard to constraints
2.3 formulate initial proposal(s).

Learning outcome
The learner will:
3. be able to set project objectives

Assessment criteria
The learner can:
3.1 identify information required for inclusion in project proposals
3.2 produce project proposals to required **scope**
3.3 produce project objectives that comply with health & safety requirements.

Range

Scope
e.g increase efficiency; improve customer satisfaction; deliver services more effectively; improvements in quality and output; increase organisation competitive edge; opportunities to expand services; more flexibility; other (to be specified in proposal)

Learning outcome
The learner will:
4. be able to design solutions to meet project objectives

Assessment criteria
The learner can:
4.1 evaluate project variables
4.2 apply numerical reasoning to given scenarios.

Learning outcome
The learner will:
5. be able to present project

Assessment criteria
The learner can:
5.1 present the project solution using appropriate media
5.2 communicate effectively
5.3 present records of project development.
Unit 522 Integrated Civil Engineering Design Project

Supporting information

This unit will facilitate the learning process by enabling learners to put the theory gained in Level 5 units into practice. Either a work based project or realistic engineering project will be simulated to provide evidence for this unit. Suitable projects may include designing a commercial building, bridge, treatment plant or recreational facility.
Unit 523 Advanced Surveying Technology

Level: 5
GLH: 60
Proposed assessment method: Assignment

Aim: This unit develops learners' further understanding of the principles of site surveying and the skills to set out civil engineering works. In addition the unit also develops learners understanding of instruments and software used in civil engineering.

Learning outcome

The learner will:

1. understand the principles of surveying and setting out

Assessment criteria

The learner can:

1.1 compare different types of **traverse**
1.2 explain the Bowditch method of correction of the misclosure error to a closed traverse
1.3 describe the **instruments** used in the transfer of control points to upper floors of multi-storey frame structures
1.4 explain the **procedure used in the transfer of control points** to upper floors of multi-storey frame structures
1.5 describe how to check the verticality of multi-storey framed structure
1.6 describe the **procedure used to set out horizontal curves** for highway construction.
1.7 describe the use of electronic surveying **instruments**
1.8 describe the benefits of electronic surveying **instruments**.

Range

Traverse
open, link and closed traverse

Instruments
optical plumbing instruments, theodolites, construction laser, autoplumb, plumb bob

Procedure used in the transfer of control points
base datum level, Temporary Bench Marks (TBMs)

Procedure used to set out horizontal curves
intersection point, tangent points, chainage, tangential angle, long chord
computation of deflection angles and chord lengths for horizontal curves

Instruments
Electronic Data Measurement (EDMs), Total Stations, electronic data loggers, GPS (Global Positioning System), lasers, digital terrain modelling

<table>
<thead>
<tr>
<th>Learning outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner will:</td>
</tr>
<tr>
<td>2. know how to use surveying equipment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner can:</td>
</tr>
<tr>
<td>2.1 explain the terminology associated with horizontal and vertical control</td>
</tr>
<tr>
<td>2.2 describe how to set up and use surveying instruments</td>
</tr>
<tr>
<td>2.3 describe adjustment procedures for levelling and angular measuring surveying instruments.</td>
</tr>
</tbody>
</table>

Range

Terminology
base line, stations, traverse, triangulation, trilateration, grid, intersection, resection, verticality, plumb, angles of elevation or depression

Instruments
steel bands, Electromagnetic Distance Measuring (EDM), automatic and dumpy and tilting levels, construction lasers, theodolites (optical or electronic), Total Station instruments

Adjustment procedures
temporary and permanent

<table>
<thead>
<tr>
<th>Learning outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner will:</td>
</tr>
<tr>
<td>3. be able to use surveying equipment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner can:</td>
</tr>
<tr>
<td>3.1 set up surveying instruments</td>
</tr>
<tr>
<td>3.2 complete practical fieldwork surveys</td>
</tr>
<tr>
<td>3.3 produce contoured plans from the fieldwork surveys.</td>
</tr>
</tbody>
</table>

Range

Instruments
steel bands, Electromagnetic Distance Measuring (EDM), automatic and dumpy and tilting levels, construction lasers, theodolites (optical or electronic), Total Station instruments
Learning outcome
The learner will:
4. be able to apply surveying data for setting out

Assessment criteria
The learner can:
4.1 calculate the co-ordinates for traverse stations and apply corrections
4.2 determine the cut and fill requirements from surveying data
4.3 set out horizontal curves.

Range
Corrections
Whole Circle Bearings (WCBs), Bowditch method
Surveying data
contours, spot height plans, sections

Learning outcome
The learner will:
5. understand the benefits of software applications used in site surveying

Assessment criteria
The learner can:
5.1 explain the benefits of the built in software in Total Stations
5.2 explain Global Positioning Systems (GPS) and their applications to civil engineering works
5.3 evaluate the use of IT to solve typical surveying problems.

Range
Benefits
reduction in error, time, accuracy, precise data
Global Positioning Systems (GPS)
Advantages: globality, efficiency, accuracy
Disadvantages: price, intervisible stations may need to be established, results may need to be transformed into a local geodetic system
Use of IT
Global Information Systems (GIS), AutoCAD
Unit 524
Environmental Water Engineering

Level: 5
GLH: 60
Proposed assessment method: Dated written paper

Aim: To introduce the learner to water and wastewater treatment. Learners will develop an understanding of
- legislations governing water and wastewater
- how to identify the nature of sewage and sewerage systems
- water treatment
- the principles of wastewater treatment
- potential Health and Safety risks.

Learning outcome
The learner will:
1. understand legislation governing water and wastewater

Assessment criteria
The learner can:
1.1 describe the purpose of legislation regarding drinking water
1.2 describe the purpose of legislation regarding wastewater
1.3 describe EU directives with specific regards to water
1.4 describe Health and Safety regulations related to water and wastewater.

Range
Purpose – drinking water
palatable, potable

Purpose - wastewater
public health, sufficiency, pollution prevention

EU directives
governing water and wastewater: the drinking water directive, the wastewater treatment directive and the water framework directive
Learning outcome
The learner will:
2. know how to identify the nature of sewage and sewerage systems

Assessment criteria
The learner can:
2.1 describe the characteristics of sewage
2.2 compare sewerage systems
2.3 describe the risks involved when working with sewage and sewerage systems.

Range
Characteristics of sewage
physical, chemical and biological, strength and quantity, polluting effects, sources of sewage

Sewerage systems
separate and combined systems and how these affect sewage sizing and material, early and present systems, design flows

Learning outcome
The learner will:
3. be able to identify sewage and sewerage systems

Assessment criteria
The learner can:
3.1 determine sewage flows
3.2 select appropriate sewer size taking into account relevant factors.

Range
Sewage flows
peak and average flows

Factors
population size, industrial activity and infiltration rates
Learning outcome
The learner will:
4. understand water treatment

Assessment criteria
The learner can:
4.1 explain water characteristics
4.2 explain water treatment systems
4.3 describe the steps taken to treat water
4.4 explain the factors to consider when designing sedimentation tanks
4.5 describe appropriate disinfectants to ensure water is safe for consumption
4.6 describe characteristics and criteria for choosing disinfectants for drinking water
4.7 describe the types of wastes resulting from water treatment
4.8 describe the potential Health and Safety risks when working in a water treatment site.

Range
Characteristics
quality and standards, physical, chemical and biological
Treatment systems
surface (coagulation) and ground water (softening) treatment systems
Treat water
coagulation, softening, mixing, flocculation, sedimentation, filtration, disinfection, adsorption
Factors
particle size and settling velocity
Disinfectants
chlorine, ozone and Ultra Violet (UV) lights
Waste
residuals from the coagulation and flocculation process, from backwashing of filters

Learning outcome
The learner will:
5. understand the principles of wastewater treatment

Assessment criteria
The learner can:
5.1 explain the processes used in wastewater treatment dependant on quantity and quality
5.2 describe the sources of sludge
5.3 describe the process for treating sludge
5.4 describe sludge disposal routes
5.5 describe the potential Health and Safety risks when working in a wastewater treatment site.
<table>
<thead>
<tr>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processes</td>
</tr>
<tr>
<td>preliminary, primary, secondary and tertiary treatment processes.</td>
</tr>
<tr>
<td>Sources of sludge</td>
</tr>
<tr>
<td>from preliminary, primary, secondary and tertiary treatment of wastewater</td>
</tr>
<tr>
<td>Treating</td>
</tr>
<tr>
<td>including anaerobic digestion, incineration and emerging treatment processes, e.g. pyrolysis, drying, enzymic hydrolyses</td>
</tr>
<tr>
<td>Disposal routes</td>
</tr>
<tr>
<td>air, land, water and space</td>
</tr>
</tbody>
</table>
Unit 525 Transport Engineering

Level: 5
GLH: 60

Proposed assessment method: Assignment

Aim: The purpose of this unit is to enable learners to develop an understanding of the regulation and funding of transport. Learners will be able to model flows on road networks and public transport services and will be able to design road junctions to accommodate demand.

This unit complements Highway Engineering and learners specialising in the area may choose to take both units.

Learning outcome
The learner will:
1. be able to design road junctions

Assessment criteria
The learner can:
1.1 compare different forms of junction
1.2 carry out geometric designs of junctions that are safe and to relevant national standards
1.3 calculate junction capacities
1.4 determine signal timings to optimise traffic networks.

Range
Junction
traffic signalised; priority; roundabout; grade separated
Geometric
kerb lines; stop lines & give way lines
Capacities
ratios of flow to capacity for peak periods of demand
Signal timings
Splits; cycles and offsets
Learning outcome
The learner will:

2. understand transport policy

Assessment criteria
The learner can:

2.1 compare different forms of transport **regulation**
2.2 describe **trends** in transport and travel
2.3 compare **funding mechanisms** for new transport infrastructure
2.4 calculate the **value** of new transport infrastructure.

Range

<table>
<thead>
<tr>
<th>Regulation</th>
<th>State ownership and control of public transport; privatised and deregulated operations; franchising</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trends</td>
<td>Global and local growth in transport; variations in growth for different transport modes and their causes</td>
</tr>
<tr>
<td>Funding Mechanisms</td>
<td>Road user charging; fares and tolls; state funding; public private partnerships; risks to investors and public</td>
</tr>
<tr>
<td>Value</td>
<td>Net Present Value; benefit to cost ratios; travel time savings; increased mobility; costs of accidents; costs of construction; operation and maintenance; benefits and costs to the environment and society.</td>
</tr>
</tbody>
</table>

Learning outcome
The learner will:

3. know how to model transport systems

Assessment criteria
The learner can:

3.1 describe **methods** of estimating **trip generation**
3.2 describe **methods** of estimating **trip distribution**
3.3 describe **methods** of estimating mode split
3.4 describe **methods** of estimating traffic assignment.

Range

<table>
<thead>
<tr>
<th>Methods - trip generation</th>
<th>Surveys; growth factor methods; reference to databases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods - trip distribution</td>
<td>Singly and doubly constrained gravity models; Furness growth factor method; surveys</td>
</tr>
<tr>
<td>Methods</td>
<td>Discrete choice models including Logit models for given origin and destination pair; surveys</td>
</tr>
<tr>
<td>Methods</td>
<td>Wardop’s first and second principles of equilibrium; all or nothing assignment; traffic counts</td>
</tr>
</tbody>
</table>
Learning outcome

The learner will:

4. be able to model transport systems

Assessment criteria

The learner can:

4.1 use standards **methods** to predict the **trip generation of an area**
4.2 use standards **methods** to predict the **distribution of trips**
4.3 use standards **methods** to predict mode split of **transport used**
4.4 use standards **methods** to assign traffic to **routes and services**.

Range

Methods - trip generation of an area
surveys; growth factor methods; reference to databases

Methods - distribution of trips
singly and doubly constrained gravity models; Furness growth factor method; surveys

Methods - transport used
discrete choice models including Logit models for given origin and destination pair; surveys

Methods - routes and services
Wardop’s first and second principles of equilibrium; all or nothing assignment; traffic counts
Reference should be made to design standards as applicable to the national context.

2.3 – This should include consideration of financial risk to investors and public.
Unit 526
Measurement, Costing and Contracts for Civil Engineers

<table>
<thead>
<tr>
<th>Level:</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>QAN:</td>
<td>J/506/9260</td>
</tr>
<tr>
<td>GLH:</td>
<td>60</td>
</tr>
<tr>
<td>Proposed assessment method:</td>
<td>Assignment</td>
</tr>
</tbody>
</table>

Aim:
The purpose of this unit is to enable learners to develop an understanding of the processes and procedures used in the measurement, tendering and estimating of civil engineering works, and to use that understanding to measure civil engineering work and produce tenders, estimates and contracts.

Learning outcome
The learner will:

1. understand the principles of measurement, tendering and estimating

Assessment criteria
The learner can:

1.1 describe the procedures used in **measurement** of civil engineering works

1.2 describe **tendering procedures** used for civil engineering works

1.3 describe **estimating procedures** used to cost civil engineering works.

Range

Measurement
Civil Engineering Standard Methods of Measurement, elemental, operational or annotated format, interpretation of drawings, identification of components, use of standard terminology, extracting and recording dimensions from scale drawings, interpretation of specifications, preamble and preliminary clauses, use of schedules

Tendering procedures
methods (open, selective, negotiated), contractual arrangements (lump sum, serial, term, cost reimbursement, design and build), process (from initial enquiry to tender submission)
Estimating procedures

Preliminaries, prime costs, provisional sums, preambles, trade sections, summary, general overhead costs, project overhead costs, costs (per functional area, floor area or element), calculation of net unit rate and gross unit rate, use as means of cost control.

Learning outcome

The learner will:

2. be able to measure civil engineering work from issued drawings and specifications

Assessment criteria

The learner can:

2.1 use standard methods to measure civil engineering works
2.2 prepare Bills of Quantities from measured works.

Range

Works

Excavations and fillings, below ground drainage, substructures, superstructures

Bills of Quantities

Process all measurements, prepare abstracts, write Bill of Quantities in accepted format, bill direct, write clauses, prepare general summary.

Learning outcome

The learner will:

3. understand how to process tenders

Assessment criteria

The learner can:

3.1 describe the types of tender contracts
3.2 describe methods of tendering
3.3 describe the range of documents produced as part of the tendering process
3.4 explain the process for tendering for civil engineering works
3.5 describe the process for inviting and receiving tenders.

Range

Documents

Bills of Quantities, drawings, specifications, schedules, contracts, relevant information, additional data as appropriate

Process for tendering

decision to tender, tender preparation strategy, selection of type of contract to be used and method of tendering.
Learning outcome
The learner will:
4. be able to produce a tender documentation

Assessment criteria
The learner can:
4.1 prepare to **tender** for civil engineering works
4.2 produce tender **documentation**
4.3 produce post- tender contracts.

Range

<table>
<thead>
<tr>
<th>Tender</th>
<th>select contract and method of tendering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Documentation</td>
<td>Bills of Quantities, drawings, specifications, schedules, contracts, relevant information, additional data as appropriate</td>
</tr>
</tbody>
</table>

Learning outcome
The learner will:
5. be able to produce an estimate

Assessment criteria
The learner can:
5.1 prepare **'all-in rates'** for civil engineering works
5.2 produce **estimates** for civil engineering works.

Range

<table>
<thead>
<tr>
<th>'All-in rates'</th>
<th>labour, materials (to include cutting and other forms of waste), construction plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimates</td>
<td>for civil engineering tasks including excavations and fillings, below ground drainage, substructures, superstructures excluding overheads and profit</td>
</tr>
</tbody>
</table>
Unit 527 Pavement Design

Level: 5
QAN: L/506/9261
GLH: 60
Proposed assessment method: Assignment

Aim: The purpose of this unit is to enable learners to develop an understanding of pavement maintenance, design and drainage. Learners will be able to design pavement thicknesses, specify materials, design drainage pipe runs and devise methods to rectify pavement defects.

Learning outcome
The learner will:
1. be able to calculate traffic loading

Assessment criteria
The learner can:
1.1 determine pavement design life to design standards
1.2 calculate design traffic accounting for traffic growth
1.3 calculate standard axle loading from standard design factors.

Range
Design factors
wear factors; channelization; left/right hand lane factors

Learning outcome
The learner will:
2. understand how to design pavement foundations

Assessment criteria
The learner can:
2.1 explain the role of pavement foundations
2.2 describe subgrade characteristics
2.3 compare design methods
2.4 compare foundation materials.
Range

Role
minimise deflection of sub base; drainage; construction traffic; even surface for pavement structure

Characteristics
California Bearing Ratios; compressive strength; drainage

Design Method
analytical design; performance design; restricted design

Learning outcome

The learner will:

3. understand how to design pavement thicknesses

Assessment criteria

The learner can:

3.1 explain the functions of flexible pavement **layers**
3.2 describe the **benefits** of porous wearing courses.

Range

Layers
surface course; binder course; base courses

Benefits
noise; skid resistance; drainage

Learning outcome

The learner will:

4. be able to design pavement thicknesses

Assessment criteria

The learner can:

4.1 design foundation thicknesses in accordance with relevant national guidance or standards
4.2 select **pavement types**
4.3 calculate **rigid pavement** thicknesses in accordance with relevant national guidance/standards
4.4 select flexible paving materials
4.5 calculate flexible pavement layer thicknesses in accordance with relevant national guidance/standard.

Range

Pavement type
rigid; flexible; flexible composite

Rigid pavement
continuously reinforced concrete roadbase; continuously reinforced concrete pavement; unreinforced concrete pavement; joint reinforced concrete pavement.
Learning outcome
The learner will:
5. be able to design highway drainage

Assessment criteria
The learner can:
5.1 select appropriate drainage systems
5.2 select return period
5.3 calculate design storms
5.4 design drainage pipes.

Range
Drainage system
French/filter drains; positive drainage; open drainage
Design storms
storm intensity; storm duration; time of concentration
Pipes
pipe material; pipe gradient; manholes.

Learning outcome
The learner will:
6. understand how to maintain pavements

Assessment criteria
The learner can:
6.1 explain the purpose of road condition surveys
6.2 explain the causes of pavement failure
6.3 propose pavement improvements.

Range
Road condition survey
deflectograph; scanner; Skid Resistant Pavement Evaluation; visual inspection
Causes
fatigue cracking; thermal cracking; poor gradation; water penetration; surface wear
Improvements
full pavement reconstruction; resurfacing; overlaying; surface dressing
Unit 527 Pavement Design
Supporting information

Guidance
Reference should be made to design standards as applicable to the national context including regulations governing the safe construction, design and management of new pavements.
Unit 528 Concrete Design

Level:
5

QAN:
R/506/9262

GLH:
60

Proposed assessment method:
Assignment

Aim:
The purpose of this unit is to enable learners to develop an understanding of the uses of concrete, the properties of concrete and its constituent parts, the methods, equipment, tools and plant used to produce concrete and the formal methods used to specify concrete mix designs.

Learning outcome

The learner will:

| 1. know the types and constituents of concrete |

Assessment criteria

The learner can:

| 1.1 describe different types of concrete |
| 1.2 describe the constituents of concrete |
| 1.3 explain how the fineness and chemical make-up of cements affect the properties of concrete |
| 1.4 explain how the properties of aggregates affect concrete |
| 1.5 explain the role of water used in concrete |
| 1.6 compare the effects of different admixtures on concrete |
| 1.7 explain why tests are used to determine the properties of concrete and its constituent parts |
| 1.8 explain the procedures used to determine the properties of concrete and its constituent parts. |

Range

Types
- plain, reinforced, precast, in situ, pre-stressed, post-stressed, lightweight, heavyweight

Constituents
- cement, fine aggregate, coarse aggregate, water, admixtures

Cements
- Portland cements (ordinary, rapid hardening, sulphate resisting, white), High Alumina Cement

Concrete
- fresh and hardened
Properties of aggregates
- shape, texture, size gradation, moisture content, specific gravity, reactivity, soundness, bulk unit weight

Role
- workability, setting, hardening, curing

Admixtures
- air-entraining, water-reducing, retarding, accelerating, plasticisers

Properties
- compressive strength, workability, density, air content, setting time, aggregate grading, moisture content, silt content, organic impurities, bulking

Learning outcome
The learner will:
2. understand concrete practices

Assessment criteria
The learner can:
2.1 describe the **methods** used to produce concrete
2.2 explain **factors** considered in the **reinforcement of concrete**
2.3 describe how **plant and equipment** is used in concreting
2.4 explain **factors** considered in the use of **formwork and falsework** in concreting
2.5 explain **health and safety ‘best practice’** to be followed when concreting.

Range

Methods
- batching, mixing, transporting, handling, placing, compacting, curing, finishing

Factors - reinforcement of concrete
- appropriately located, bonded, secured and covered

Reinforcement
- steels bars, fabric mesh, fibres (glass, polypropylene, steel, carbon)

Plant and equipment
- batch plants, concrete mixers, Ready Mixed Concrete (RMC) lorries, dump trucks, concrete skips, wheelbarrows, pumps, vibrators (immersion and surface), scabblers, power trowels/floats

Factors - formwork and falsework
- propping, safety, stability, release agents, striking times

Health and safety ‘best practice’
- risk assessments, method statements, compliance with relevant legislation (Health and Safety at Work Act, Management of Health and Safety at Work Regulations, Construction Design and Management Regulations)
<table>
<thead>
<tr>
<th>Learning outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner will:</td>
</tr>
<tr>
<td>3. be able to design concrete mixes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner can:</td>
</tr>
<tr>
<td>3.1 compare methods used to design concrete mixes in accordance with standards</td>
</tr>
<tr>
<td>3.2 design a concrete mix to meet specified parameters.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete mixes</td>
</tr>
<tr>
<td>nominal, designed, designated, proprietary</td>
</tr>
<tr>
<td>Parameters</td>
</tr>
<tr>
<td>compressive strength at 18 days, workability, maximum water-cement ratio, type of aggregate, maximum aggregate size, minimum cement content</td>
</tr>
</tbody>
</table>
Unit 529 Sustainable Development

Level: 5
QAN: Y/506/9263
GLH: 60
Proposed assessment method: Assignment

Aim: The purpose of this unit is to enable learners to develop an understanding of essential concepts of sustainable development and the impact of its implementation.

On completion of this unit, learners will be able to:
- analyse environmental challenges
- analyse problems posed by the management and development of the built environment
- evaluate solutions.

Learning outcome
The learner will:
1. understand sustainability and sustainable development

Assessment criteria
The learner can:
1.1 describe the aims of sustainability
1.2 explain sustainable development
1.3 explain the threats to sustainability
1.4 describe the aims of international treaties which influence sustainable development.

Range
Sustainable development
history of, theory of, relation with the environment, effect on people’s lives, guidelines

Threats
urbanization, excessive consumption, geopolitics, poverty
Learning outcome

The learner will:

2. understand the significance of environmental issues involved with the management and development of the built environment

Assessment criteria

The learner can:

2.1 describe environmental regulation
2.2 describe environmental policies
2.3 evaluate Environmental Impact Assessment (EIA) methods
2.4 explain the principles of Life Cycle Analysis
2.5 describe Health and Safety regulations which impact on environmental development.

Range

Environmental regulation
pollution control, resource conservation, land use

Environmental policies
air, water, waste, contaminated land, noise, hazardous substances

Methods
Environmental Impact Analysis (EIA) Building Research Establishment
Environmental Assessment Methods (BREEAM) Strategic Environmental Assessment (SEA)

Learning outcome

The learner will:

3. understand the concept of green buildings

Assessment criteria

The learner can:

3.1 describe the characteristics of green buildings
3.2 explain the techniques that are used when building
3.3 describe sustainable material used in green buildings
3.4 describe Health and Safety regulations which impact on green buildings during construction and operation.

Range

Characteristics
sustainable and efficient processes, design efficiency

Techniques
water efficiency, rainwater harvesting, waste management and minimisation, water recycling, Sustainable Urban Drainage Systems (SUDS), pollution reduction, improved indoor air quality.

Sustainable Materials
recycled stone, recycled steel, locally sourced materials
Appendix 1 Sources of general information

The following documents contain essential information for centres delivering City & Guilds qualifications. They should be referred to in conjunction with this handbook. To download the documents and to find other useful documents, go to the Centres and Training Providers homepage on www.cityandguilds.com.

Centre Guide – Delivering International Qualifications contains detailed information about the processes which must be followed and requirements which must be met for a centre to achieve ‘approved centre’ status, or to offer a particular qualification. Specifically, the document includes sections on:

- The centre and qualification approval process and forms
- Assessment, verification and examination roles at the centre
- Registration and certification of candidates
- Non-compliance
- Complaints and appeals
- Equal opportunities
- Data protection
- Frequently asked questions.
Useful contacts

<table>
<thead>
<tr>
<th>UK learners</th>
<th>General qualification information</th>
<th>T: +44 (0)844 543 0033</th>
<th>E: learnersupport@cityandguilds.com</th>
</tr>
</thead>
</table>

| International learners | General qualification information | T: +44 (0)844 543 0033 | F: +44 (0)20 7294 2413 | E: intcg@cityandguilds.com |

| Centres | Exam entries, Certificates, Registrations/enrolment, Invoices, Missing or late exam materials, Nominal roll reports, Results | T: +44 (0)844 543 0000 | F: +44 (0)20 7294 2413 | E: centresupport@cityandguilds.com |

| Single subject qualifications | Exam entries, Results, Certification, Missing or late exam materials, Incorrect exam papers, Forms request (BB, results entry), Exam date and time change | T: +44 (0)844 543 0000 | F: +44 (0)20 7294 2413 | E: singlesubjects@cityandguilds.com |

| International awards | Results, Entries, Enrolments, Invoices, Missing or late exam materials, Nominal roll reports | T: +44 (0)844 543 0000 | F: +44 (0)20 7294 2413 | E: intops@cityandguilds.com |

| Walled Garden | Re-issue of password or username, Technical problems, Entries, Results, e-assessment, Navigation, User/menu option, Problems | T: +44 (0)844 543 0000 | F: +44 (0)20 7294 2413 | E: walledgarden@cityandguilds.com |

| Employer | Employer solutions, Mapping, Accreditation, Development Skills, Consultancy | T: +44 (0)121 503 8993 | E: business@cityandguilds.com |

| Publications | Logbooks, Centre documents, Forms, Free literature | T: +44 (0)844 543 0000 | F: +44 (0)20 7294 2413 |

Every effort has been made to ensure that the information contained in this publication is true and correct at the time of going to press. However, City & Guilds’ products and services are subject to continuous development and improvement and the right is reserved to change products and services from time to time. City & Guilds cannot accept liability for loss or damage arising from the use of information in this publication.

If you have a complaint, or any suggestions for improvement about any of the services that we provide, email: feedbackandcomplaints@cityandguilds.com
About City & Guilds
As the UK’s leading vocational education organisation, City & Guilds is leading the talent revolution by inspiring people to unlock their potential and develop their skills. We offer over 500 qualifications across 28 industries through 8500 centres worldwide and award around two million certificates every year. City & Guilds is recognised and respected by employers across the world as a sign of quality and exceptional training.

City & Guilds Group
The City & Guilds Group operates from three major hubs: London (servicing Europe, the Caribbean and Americas), Johannesburg (servicing Africa), and Singapore (servicing Asia, Australia and New Zealand). The Group also includes the Institute of Leadership & Management (management and leadership qualifications), City & Guilds Licence to Practice (land-based qualifications), the Centre for Skills Development (CSD works to improve the policy and practice of vocational education and training worldwide) and Learning Assistant (an online e-portfolio).

Copyright
The content of this document is, unless otherwise indicated, © The City and Guilds of London Institute and may not be copied, reproduced or distributed without prior written consent. However, approved City & Guilds centres and candidates studying for City & Guilds qualifications may photocopy this document free of charge and/or include a PDF version of it on centre intranets on the following conditions:

- centre staff may copy the material only for the purpose of teaching candidates working towards a City & Guilds qualification, or for internal administration purposes
- candidates may copy the material only for their own use when working towards a City & Guilds qualification

The Standard Copying Conditions (see the City & Guilds website) also apply.

Please note: National Occupational Standards are not © The City and Guilds of London Institute. Please check the conditions upon which they may be copied with the relevant Sector Skills Council.

Published by City & Guilds, a registered charity established to promote education and training

City & Guilds
5 - 6 Giltspur Street
London EC1A 9DE
T +44 (0)844 543 0000
F +44 (0)20 7294 2413
www.cityandguilds.com

HB-13-9208