

Introduction

This scheme of work is intended to assist the tutor in delivering this unit to engineering students. It includes a considerable number of worked examples as an aide memoire for the tutor, and a number of suggestions for practice problems. However, because the primary aim is to teach the mathematical methods, there is often little engineering context. It is extremely important that, once each mathematical process has been mastered, students should be introduced to contextual engineering problems so that they can have practice in

- Selecting the correct method and
- Working towards a recognisable engineering solution to an engineering problem. This is important in order to maintain students' motivation and focus

Suggested teaching times

Since each student group is unique, the suggested teaching hours can only be a guide as to how the allotted 60 GLH is divided up. If there is time left on a session then students should fill that time doing realistic problems until they become second nature. Students should appreciate that in engineering, mathematics is an essential and very powerful tool. It is not done for its own sake, but as a means of solving complex engineering problems.

SCHEME OF WORK LEVEL 4 DIPLOMA IN MECHANICAL ENGINEERING

UNIT 401 ENGINEERING MATHEMATICS

Lesson 1: Working with algebraic functions

Suggested Teaching Time: 8 hours

Learning Outcome: 1. Be able to use algebraic methods to analyse and solve engineering problems

Торіс	Suggested Teaching	Suggested Resources
AC 1.1 Evaluate basic	Session 1 (2 hrs): Functions	Book:
algebraic functions AC 1.2 Solve engineering problems that are	Explain what is meant by a function and a composite function.Solve problems involving composite functions.	Bird. J. O., <i>Higher</i> <i>Engineering Mathematics</i> 7 th edition (Routledge 2014)
described by algebraic equations and	$g \cdot f(x)$ is a composite function and when calculating this type, f is performed first and the result is substituted into a	ISBN-13: 978-0415662826
exponential or logarithmic functions	Explain what is meant by an inverse function.	Websites:
	Solve problems involving inverse functions.	links
	In general the inverse of a function is the reverse of the operation carried out to find $f(x)$	http://mathworld.wolfram.com
	and is written as $f^{-1}(x)$	<u>/</u>
	Given $f(x) = 2x + 1$ find $f^{-1}(x)$	http://www.mathcentre.ac.uk/
	Let $y = 2x + 1$ change $f(x)$ as y and $f^{-1}(y) = x$	Good free UK-based
	y = 2x + 1	maths
	$x = \frac{y-1}{2}$	
	$\therefore f^{-1}(x) = \frac{x-1}{4}$	

SCHEME OF WORK LEVEL 4 DIPLOMA IN MECHANICAL ENGINEERING

UNIT 401 ENGINEERING MATHEMATICS

Lesson 1: Working with algebraic functions

Suggested Teaching Time: 8 hours

Learning Outcome: 1. Be able to use algebraic methods to analyse and solve engineering problems

Торіс	Suggested Teaching	Suggested Resources
	Session 2 (2 hrs): Indices	
	Revise the laws of indices.	
	Solve equations involving indices.	
	e.g. $125^{(2x+1)} \cdot 25^{2x} \cdot 625^{(3x+1)} = 3125$	
	Session 3 (2 hrs): Partial fractions	
	Rules and methods for partial fractions.	
	Solve problems in partial fractions:	
	Three basic types of denominators	
	Linear factors:	
	$\frac{3}{(x+5)(x-2)} = \frac{A}{(x+5)} + \frac{B}{(x-2)}$	
	Quadratic factor that does not factorise:	
	$\frac{(2x+3)}{(x-4)(x+7)^2} = \frac{A}{(x+3)} + \frac{Bx+C}{(x^2+5)}$	

Lesson 1: Working with algebraic functions

Suggested Teaching Time: 8 hours

Learning Outcome: 1. Be able to use algebraic methods to analyse and solve engineering problems

Торіс	Suggested Teaching	Suggested Resources
	Repeated root	
	$\frac{(2x+3)}{(x-4)(x+7)^2} = \frac{A}{(x-4)} + \frac{B}{(x+7)} + \frac{C}{(x+7)^2}$	
	Explain to students the use of partial fractions to enable some integration to be carried out.	
	Session 4 (2 hrs): Logarithms	
	State the laws of logarithms.	
	Apply the laws to solve problems.	
	Express in terms of log a, log b and log c	
	$log(a^3bc^4)$ and $lograc{\sqrt{10b}}{c^3}$	
	Solve for x: $(5.932)^{2x-4} = (9.875)x$	
	The charge q on a capacitor is given by:	
	$q = 3.16 \times 2.72^{-4.32t}$	
	Calculate:	
	i) t when q = 1.7	
	ii) q when t = 0.28	

Lesson 2: Analysis using trigonometry

Suggested Teaching Time: 5 hours

Learning Outcome: 2. Be able to solve engineering problems that require the use of trigonometric methods of analysis

Торіс	Suggested Teaching	Suggested Resources
AC 2.1 Evaluate basic	Session 1 (5 hrs): Trigonometry	Book:
trigonometric functions	Revision of sine and cosine rules, trigonometric graphs and sec, cosec and cotan.	Bird. J. O., <i>Higher</i>
AC 2.2 Evaluate	State and apply trigonometric identities, addition and double-angle formulae:	Engineering Mathematics 7 th edition (Routledge 2014)
trigonometric identities	Addition formulæ:	ISBN-13: 978-0415662826
to solve problems	$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$	Websites:
	$cos(A + B) = cos A cos B \pm sin A sin B$	http://www.mathcentre.ac.uk/l
	$\tan A + \tan B$	<u>inks</u>
	$tan(A+B) = \frac{1}{1-tan A tan B}$	http://mathworld.wolfram.com
	$tan(A-B) = \frac{tan A - tan B}{1 + tan A tan B}$	http://www.mathcentre.ac.uk/
	Double-angle formulæ:	
	$\sin A = 2 \sin A \cos A$	
	$\cos 2A = \cos^2 A \sin^2 A$	
	$\tan 2A = \frac{2\tan A}{1-\tan^2 A}$	

Lesson 2: Analysis using trigonometry

Suggested Teaching Time: 5 hours

Learning Outcome: 2. Be able to solve engineering problems that require the use of trigonometric methods of analysis

Торіс	Suggested Teaching	Suggested Resources
	Trigonometric identities:	
	Identities	
	sin x = tan x . cos x	
	$\cos^{-1}x + \sin^2 x = 1$	
	$1 + tan^2 x = sec^2 x$	
	$1 + \cot^2 x = \csc^2 x$	
	Solve trigonometric equations within given ranges both in degrees and radians.	
	Determine exact values (surd form) of 15°, 30°, 45° etc.	
	Conversion of $a \sin \omega t + b \cos \omega t$ into $R \sin(\omega t + \alpha)$	
	Solve problems in three-dimensional trigonometry with an engineering context; an example	
	would be finding the resultant of three forces acting on a cutting tool.	

Lesson 3: Differential Calculus

Suggested Teaching Time: 8 hours

Торіс	Suggested Teaching	Suggested Resources
AC 3.1 Evaluate first and	Session 1 (2 hrs): Differentiation	Book:
higher order derivatives of a function involving	Revise rules and methods of differentiation of simple algebraic functions.	Bird. J. O., Higher Engineering
algebraic and/or	Solve equations for maximum or minimum values	<i>Mathematic</i> s 7 ^{tn} edition (Routledge 2014)
expressions	Apply the rules to find higher derivatives $\frac{d^2y}{dx^2}$, $\frac{d^3y}{dx^3}$ etc.	ISBN-13: 978-0415662826
AC 3.2 Use differential	ux ux	Websites:
calculus to obtain solutions for engineering		http://www.mathcentre.ac.uk/li nks
and trigonometric equations		http://mathworld.wolfram.com/ http://www.mathcentre.ac.uk/
	Session 2 (2 hrs): Differentiation of trigonometric functions.	
	Differentiate: $y = a \sin x$	
	y = tan a heta	
	$y = \sin a\theta$	
	$y = tan \frac{a\theta}{b}$	
	$y = cosec \frac{\theta}{a}$	
	$y = sin (a\theta + x)$	

Lesson 3: Differential Calculus

Suggested Teaching Time: 8 hours

Торіс		Suggested Teaching	Suggested Resources
	Session 3 (2 hrs): Differen	tiation of logarithmic and exponential functions	
	Explain differential propertie	s of logarithmic and exponential functions. Differentiate:	
	<i>y</i> =	ln x	
		y = ln 5x	
		$y = 4 \ln 3x$	
		$y = \ln a e^{-3x}$	
	Solve problems involving fo	r example:	
	Discharge of a capacitor:	$q = Qe^{\frac{-t}{RC}}$	
	Tension in belts:	$T_1 = T_2 e^{\mu\theta}$	
	Growth of current in a ca	apacitive circuit:	
		$i = i(1 - e^{\frac{-t}{RC}})$	
	Differentiate:		
		$y = \ln(6x^3 - 5)$	
		$y = \ln(\sin 3x)$	
		$y = ln \frac{x+4}{x-3}$	
	use $\log \frac{a}{b} = l$	og a - log b in the third example	

Lesson 3: Differential Calculus

Suggested Teaching Time: 8 hours

Торіс	Suggested Teaching	Suggested Resources
	Session 4 (2 hrs): Differentiation of a function of a function. The chain rule	
	$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$	
	Differentiate $y = (4x^3 - 5)^4$	
	Let $(4x^3 - 5) = u$ then $y = u^4$	
	$\frac{du}{dx} = 12x^2 \text{ and } \frac{dy}{du} = 4u^3$	
	then	
	$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 4u^3 \cdot 12x^2$	
	$= 48x^2(4x^3 - 5)^3$	
	An easier method is to differentiate the bracket, treating it as x^n then differentiate the	
	function inside the bracket. To obtain $\frac{dy}{dx}$ multiply the two results together. Check back to	
	the answer above.	
	Differentiate different types e.g.	
	$y = \sqrt{4x^3 + 5x - 4}$	
	$y = \frac{3}{(4t^3 - 7)^5}$	

Lesson 3: Differential Calculus

Suggested Teaching Time: 8 hours

Торіс	Suggested Teaching	Suggested Resources
	Session 5 (2 hrs): Differentiation of a product	
	When $y = uv$ and u and v are functions of x then	
	$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$	
	In words it can be remembered as the first times the derivative of the second plus the second times the derivative of the first.	
	Solve problems involving logarithmic, trigonometric and exponential terms for example:	
	a)	
	$y = 3x^3sin2x$	
	$\frac{dy}{dx} = (3x^3)(2\cos 2x) + (\sin 2x)(9x^2)$	
	$= 6x^3 cos 2x + 9x^2 sin 2x$	
	$= 3x^2(2x\cos 2x + 3\sin 2x)$	
	b) Given that	
	$V=2e^{3t}sin2t,$	
	evaluate $\frac{dv}{dt}$ when $t = 0.5$	
	$\frac{dv}{dt} = 2e^{3t} \cdot 2\cos 2t + \sin 2t \cdot 6e^{3t}$	

Lesson 3: Differential Calculus

Suggested Teaching Time: 8 hours

Торіс	Suggested Teaching	Suggested Resources
	Substitute for t:	
	$2e^{1.5} \cdot 2cos1 + sin1 \cdot 6e^{1.5}$	
	= 32.31 (note that sin and cos are in radians)	
	Session 6 (2 hrs): Differentiation of a quotient	
	When: $m{y}=rac{u}{v}$ and $m{u}$ and $m{v}$ are functions of $m{x}$ then	
	$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	
	Solve problems involving logarithmic, trigonometric and exponential terms for example:	
	$y = \frac{3sin4x}{4x^3}$	
	$\frac{dy}{dx} = \frac{4x^3 \cdot 12\cos(4x - 3\sin(4x \cdot 12x^2))}{16x^6}$	
	$=\frac{48x^3\cos 4x - 36x^2\sin 4x}{16x^6}$	
	$=\frac{3(4x\cos 4x-3\sin 4x)}{4x^4}$	

Lesson 3: Differential Calculus

Suggested Teaching Time: 8 hours

Торіс	Suggested Teaching	Suggested Resources
	b) $y = \frac{2xe^{4x}}{sinx}$ $= \frac{sinx(2x \cdot 4e^{4x} + 2e^{4x}) - 2xe^{4x}cosx}{sin^2 x}$ $= \frac{8xe^{4x} \cdot sinx + 2e^{4x}sinx - xe^{4x}cosx}{sin^2 x}$ $= \frac{2e^{4x}(4xsinx + sinx - xcosx)}{sin^2 x}$ $= \frac{2e^{4x}}{sin^2 x}[sinx(4x + 1) - xcosx)]$	
	Session 7 (2 hrs): Differentiating implicit functions When equations involving say x and y this is called an implicit function e.g. $y^4 + 3x^2 = y^3 - x$ By using the function of a function rule it is possible to differentiate an implicit function. Differentiating an implicit function can be summarised as $\frac{d}{dxf(y)} = d/dyf(y) \cdot \frac{dy}{dx}$	

Lesson 3: Differential Calculus

Suggested Teaching Time: 8 hours

Торіс	Suggested Teaching	Suggested Resources
	Solving typical problems where the answers should be in their simplest form:	
	Find $\frac{dy}{dx}$ in terms of x and y	
	a)	
	$y^4 + 8x = x^3$	
	$4y^3\frac{dy}{dx} + 8 = 3x^2$	
	$\frac{dy}{dx} = \frac{3x^2 - 8}{4y^3}$	
	b)	
	$x^3 + 3xy - y^2 = 6$ using the product rule:	
	$3x^2 + 3x\frac{dy}{dx}(\times 1) + y(\times 3) - 2y\frac{dy}{dx} = 0$	
	$\frac{dy}{dx}(3x-2y) = 3(y-x^2)$	
	$\frac{dy}{dx} = \frac{3(y-x^2)}{(3x-2y)}$	

City &

UNIT 401 ENGINEERING MATHEMATICS

Lesson 4: Integral Calculus

Suggested Teaching Time: 16 hours

Торіс	Suggested Teaching	Suggested Resources
AC 3.3 Use methods of integration to determine indefinite and definite integrals of algebraic and trigonometric functions AC 3.4 Use integral calculus to obtain solutions for engineering applications of algebraic and trigonometric equations AC 3.5 Use integration to solve engineering applications of differential equations in which the variables are separable.	Suggested Teaching Session 1 (2 hrs): Integration. Revision of basic concepts, methods and rules of integration. Revision of: $\int \frac{1}{x^4} + \frac{1}{x^2} + x^4 + x^2 dx$ $\int_0^1 5cos3x dx$ $\int_{-1}^2 \frac{2}{3e^{2x}} dx$ $\int \frac{x^4 + 2}{x^2} dx$ Integration by substitution and by parts $\int 2x(x^3 - 4) dx$ Practice problems.	Suggested Resources Book: Bird. J. O., <i>Higher</i> <i>Engineering Mathematics</i> 7 th edition (Routledge 2014) ISBN-13: 978-0415662826 Websites: http://www.mathcentre.ac.u k/links http://mathworld.wolfram.co m/ http://www.mathcentre.ac.u k/

Lesson 4: Integral Calculus

Suggested Teaching Time: 16 hours

Торіс	Suggested Teaching	Suggested Resources
	Session 2 (3 hrs): Area under a curve.	
	Sketch graphs of functions to be able to answer questions about areas under the graph between given x or y values.	
	Sketch the graph of:	
	$y = x^3 + 2x^2 - 5x - 6$	
	Show how integration can be used to calculate areas bounded by a curve and an axis.	
	Use definite integration to find the area between an axis and a curve lying above the x-axis.	
	Use definite integration to find the area between an axis and a curve lying below the x axis	
	Determine the points of intersection of two curves and the area between these points.	
	Note that: Confusion can occur when calculating areas that are above and below the axis. The areas should be calculated separately and then added together.	

Lesson 4: Integral Calculus

Suggested Teaching Time: 16 hours

Торіс	Suggested Teaching	Suggested Resources
	Find the area between $y = x$ and $y = x^2$ from $x = 0$ and $x = 1$	
	$A = \int_0^1 [x - x^2] dx$	
	$=\left[\frac{1}{2}x^2-\frac{1}{3}x^3\right]_0^1$	
	$=rac{1}{6}$ sq units	
	Determine the points of intersection of the following two curves and the area between these points: $y^2 = 3x$ and $x^2 = 3y$	
	$y = 3x^{\frac{1}{2}}$ and $y = \frac{x^2}{3} \therefore 3(3x)^{\frac{1}{2}} = x^2$	
	Square both sides: $9 \cdot 3x = x^4 \therefore x^3 = 27 \ so \ x = 3 \ or \ 0$	
	$A = \int_0^3 3x^{\frac{1}{2}} - \frac{x^2}{3} dx$	
	$A = \left[2x^{\frac{3}{2}} - \frac{x^3}{9}\right]_0^3$	
	= 10 . 4 square units	

Lesson 4: Integral Calculus

Suggested Teaching Time: 16 hours

Торіс	Suggested Teaching	Suggested Resources
	Session 3 (2 hrs): Volumes of rotation	
	Some practical examples should be used e.g.:	
	A bucket has top and bottom radii of 200mm and 100mm respectively and a height of 200mm.	
	a) Show, when the sides slope uniformly, that it may be considered as being	
	formed by the revolution of the line $y = \frac{x}{2} + 100$ about the x axis from $x = 0$	
	to $\mathbf{x} = 200$	
	b) Find the capacity of the bucket in litres	
	a)	
	$y - mx + y = \frac{100}{200x} + 100$	
	$y = \frac{x}{2} + 100$	
	b)	
	$V = \pi \int_0^{200} y^2 dx$	
	$\pi \left[\frac{x^3}{3} + 50x^2 + 10000x \right]_0^{200} = 14.7 \ litres$	

Lesson 4: Integral Calculus

Suggested Teaching Time: 16 hours

Торіс	Suggested Teaching	Suggested Resources
	Session 4 (2 hrs): Centre of mass of a lamina	
	Show that the centre of mass of a lamina is	
	$x = \frac{\int_{a}^{b} xydx}{\int_{a}^{b} ydx}$	
	Session 5 (2 hrs): Mean value under a curve.	
	$\overline{y} = \frac{\frac{1}{2} \int_{a}^{b} y^{2} dx}{\int_{a}^{b} y dx}$	

Lesson 4: Integral Calculus

Suggested Teaching Time: 16 hours

Торіс	Suggested Teaching	Suggested Resources
	Show that the mean value under a curve	
	$\overline{y} = \frac{area \ under \ curve}{length \ of \ the \ base}$	
	If the area of the curve is found by integration then	
	$\overline{y} = \frac{\int_a^b y dx}{b-a} or$	
	$\overline{y} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$	
	Solve problems e.g.:	
	Determine the co-ordinates of the centre of area of the curve $y = 5x^2$ between $x = 1$ and $x = 4$	
	Example 1	
	Determine, by integration, the mean value of $y = 3x^3$ between $x = 1$ and $x = 3$	
	$\overline{y} = \frac{1}{3-1} \int_{1}^{3} y dx$	
	$\overline{y} = \frac{1}{2} \int_{1}^{3} 3x^2 dx$	
	$=rac{1}{2} \left[rac{3x^4}{4} ight]_1^3 = 30$	

Lesson 4: Integral Calculus

Suggested Teaching Time: 16 hours

Торіс	Suggested Teaching	Suggested Resources
	Example 2	
	A sinusoidal voltage $v = 100 sin \omega t$. Using integration determine the mean voltage over a half cycle.	
	Note: When finding the mean value of a periodic function such as a sine wave the mean value is taken over a half cycle because the mean value over a complete cycle is zero.	
	$\overline{v} = \frac{1}{\pi - 0} \int_0^{\pi} v d\omega t$	
	$=\frac{1}{\pi}\int_0^{\pi}(100\sin\omega t)d\omega t$	
	$=\frac{100}{\pi}\Big[-\cos\omega t\Big]_0^{\pi}$	
	Practice problems using the following examples as a guide:	
	a) Determine the mean value of $y = sin2\theta$ from $\theta = 0$ to $\theta = \frac{\pi}{4}$	
	b) A sinusoidal voltage has a peak value of 350v , calculate its mean value.	

Lesson 4: Integral Calculus

Suggested Teaching Time: 16 hours

Торіс	Suggested Teaching	Suggested Resources
	Session 6 (2 hrs): root mean square (RMS) values	
	The RMS value of an alternating current is defined as that current which will give the same heating effect as the equivalent direct current.	
	y = f(x)	
	$r.m.s = \sqrt{\frac{1}{b-a} \int_{a}^{b} y^2 dx}$	
	Example 1: Determine the RMS value of $y = 4x^3$ between $x = 0$ and $x = 3$	
	$=\sqrt{\frac{1}{3-0}\int_{0}^{3}(4x^{3})^{2}}dx$	
	$=\sqrt{\frac{1}{3}\int_0^3 16x^6}dx$	

Lesson 4: Integral Calculus

Suggested Teaching Time: 16 hours

Торіс	Suggested Teaching	Suggested Resources
	$= \sqrt{\frac{1}{3} \left[\frac{16}{7} x^7\right]_0^3}$	
	RMS value = 40.8	
	Example 2: A current $i = 30sin100\pi t$ amps flows in a circuit. Determine its RMS value over a range of $t = 0$ and $t = 10$ ms.	
	$i^2 = (30sin100\pi t)^2 = 900sin^2100\pi t$	
	To be able to integrate $sin^2 100\pi t$ we change it to the $\frac{1}{2}(1 - cos 200\pi t)$ trig identity	
	$sin^{2x} = \frac{1}{2}(1 - cos2x)$	
	$r.m.s. = \sqrt{\frac{1}{10} \int_0^{10} 900 \times \frac{1}{2} (1 - \cos 200\pi t)} dt$	
	$=\sqrt{\frac{1}{10}\left[450t-\frac{900}{200\pi}sin200\pi t\right]_{0}^{10}}$	
	$= \sqrt{\frac{1}{10} \left[4500 - \frac{4.5 \times 0.2756}{\pi} \right]}$	
	r. m. s. = 21.21	

Lesson 4: Integral Calculus

Suggested Teaching Time: 16 hours

Торіс	Suggested Teaching	Suggested Resources
	Session 7 (3 hrs): Solving differential equations	
	Explain the difference between the general solution and the particular solution	
	Example 1: Determine the general solution of	
	$x\frac{dy}{dx} = 3 - 4x^3$	
	Rearrange the equation	
	$\frac{dy}{dx} = \frac{3}{x} - 4x^3$	
	Integrating both sides	
	$y = 3 \ln x - x^4 + c$ which is the general solution	
	Sample problems	
	Solve the following differential equations:	
	a) $\frac{dy}{dx} = \cos 3x - 4x$	
	b) $2x\frac{dy}{dx} = 4 - x^2$	

Lesson 4: Integral Calculus

Suggested Teaching Time: 16 hours

Торіс	Suggested Teaching	Suggested Resources
	Example 2: Determine the particular solution of	
	$\frac{dy}{dx} = 4 + 3y$ given $y = 1$ and $x = 4$	
	$\int dx = \int \frac{dy}{4+3y} let \ u = (4+3y) \therefore \frac{du}{dy} = 3$	
	$\int dx = \int \frac{1}{3u} du$	
	$x = \frac{1}{3}\ln(4+3y) + c$ $y = 1$ and $x = 4$	
	$4 = \frac{1}{3}\ln 7 + c \therefore c = 3.35$	
	$x = \frac{1}{3}ln(4+3y) + 3.35$	
	Practice examples:	
	a) Solve the equation $\frac{dy}{dx} = \frac{1x^2}{y}$ given $x = 2$ and $y = 3$	
	b) Determine the equation of the curve, in terms of y , which satisfies	
	$x^2 - 1 = xy\frac{dy}{dx}$	
	Given the curve passes through (1,2)	

Lesson 4: Integral Calculus

Suggested Teaching Time: 16 hours

Торіс	Suggested Teaching	Suggested Resources
	c) The equation of the bending moment at a point on a simply supported beam is given	
	by	
	$\frac{dM}{dx} = -W(l-x)$	
	Where W and x are constants. Find M in terms of x given	
	$M = \frac{1}{2} \cdot \frac{w}{2}$ when $x = 0$	

Lesson 5: Complex Numbers in Engineering

Suggested Teaching Time: 15 hours

Торіс	Suggested Teaching	Suggested Resources
AC 4.1 Evaluate	Session 1 (3 hrs): Working with complex numbers	Book:
complex equations using rectangular and polar forms of complex numbers	Revision of the evaluation of complex numbers. Calculate from the Cartesian form of a complex number the modulus and the argument.	Bird. J. O., <i>Higher</i> <i>Engineering Mathematics</i> 7 th edition (Routledge 2014)
AC 4.2 Use complex	Example: For a complex number $Z = 5 + j3$	ISBN-13: 978-0415662826
function analysis to	Modulus $ \mathbf{Z} = \sqrt{(5^2 + 3^2)} = 5.83$	Websites:
obtain solutions to engineering problems.	Argument $argZ = \theta = tan^{-1}\frac{3}{5} = 31^{\circ}$ Polar form $5.83 \angle 31^{\circ}$	http://www.mathcentre.ac.uk/l inks http://mathworld.wolfram.com /
	Example: Express each of the following in polar form	mup.//www.matricentre.ac.uk/
	3-j3	
	-3 + j3	
	-6 + j	
	Represent complex numbers on an Argand diagram	
	Subtraction and addition of complex numbers	

Lesson 5: Complex Numbers in Engineering

Suggested Teaching Time: 15 hours

Торіс	Suggested Teaching	Suggested Resources
	Example:	
	If $Z_1 = (a = jb)$ and $Z_2 = (c + jd)$ then	
	$Z_1 + Z_2 = (a + jb) + (c + jd)$	
	= (a+c)+j(b+d)	
	$Z_1 - Z_2 = (a + jb) - (c + jd)$	
	= (a-c) - j(b-d)	
	Find solutions for each of the following:	
	(3+j2) + (5+j6)	
	(1 = j2) - (4 + j)	
	Multiplying complex numbers	
	Find the product of:	
	(3+j2)(4+j)	
	= 12 + j3 + j8 + j ² (j ² 2 = -2 because j ² = -1)	
	= 12 + j3 + j8 - 2	
	= 10 + j11	
	Example problems: Find the products each of the following:	
	(2-j6)(3-j7)	
	-2+j3)(-5-j)	
	(3-j5)(3-j3)(1-j)	
	(2+j)(1-j)(-3+j2)	

Lesson 5: Complex Numbers in Engineering

Suggested Teaching Time: 15 hours

Торіс	Suggested Teaching	Suggested Resources
	Session 2 (2 hrs): Division of complex numbers	
	Explain that the complex conjugate of a complex number is obtained by changing the sign of the imaginary part i.e. if $x + jy$ represents a complex number then $x - jy$ is known as its conjugate. Example:	
	(3 - j4)(3 + j4)	
	$= 9 + j12 - j12 - j^2 16 \qquad (-[-1] = 16)$	
	= 9 + 16 = 25	
	The product of a complex number and its complex conjugate can be evaluated on sight	
	$(x+jy)(x-jy) = x^2 = y^2$	
	Example:	
	$\frac{4+j5}{1-j} = \frac{(4-j5)(1+j)}{(1-j)(1+j)}$	
	$=\frac{4+j5+j4+j^25}{1-j+j-j2}$	
	$=\frac{4+j9+(-1)5}{1-(-1)}$	
	$=\frac{-1}{2}+j\frac{9}{2}$	
	= -0.5 + j4.5	

Lesson 5: Complex Numbers in Engineering

Suggested Teaching Time: 15 hours

Торіс	Suggested Teaching	Suggested Resources
	Evaluate each of the following	
	a) $\frac{2-j5}{3+j4}$	
	b) $\frac{7+j3}{8-j3}$	
	Example 1	
	The impedance of an electrical circuit having	
	a resistance and inductive reactance in series is	
	given by the complex number $Z = 5 + j6$. Find the admittance Y of a circuit $Y = \frac{1}{z}$	
	Example 2	
	Two impedances Z_1 and Z_2 are denoted by the complex $Z_1 = 1 + j5$ and $Z_2 = j8$. Determine the equivalent impedance Z when	
	a) Z_1 and Z_2 are in series	
	b) Z_1 and Z_2 are in parallel	

Lesson 5: Complex Numbers in Engineering

Suggested Teaching Time: 15 hours

Торіс		Suggested Teaching	Suggested Resources
	Session 3 (2 hrs): Complex If two complex num If $a + jb = c + jc$	ex equations bers are equal then their imaginary parts are equal then $a = c$ and $b = d$	
	Example 1:		
	Solve	3(x+jy)=9-j3	
		3x + j3y = 9 - j3	
	Equating real parts		
		$3x=9 \therefore x=3$	
	Equating imaginary parts		
		$3y=3$ \therefore $y=1$	
		$y = 2 - x \ \therefore \ -5x - 4(2 - x) = 3$	
	Example 2:		
	Solve	(x - j4y) + (y - j5x) = 2 + j3	
		(x+y)j(-4y-5x) = 2+j3	
	Equating both terms		
		x + y = 2 and $5x - 4y = 3$	
		$y = 2 - x \therefore -5x - 4(2 - x) = 3$	
		-5x-8+4x=3	
		x = -11	

Lesson 5: Complex Numbers in Engineering

Suggested Teaching Time: 15 hours

Торіс		Suggested Teaching	Suggested Resources
	(sub - 11 into y = 2 - x) y	<i>y</i> = 13	
	Solve each of the following equ	uations	
	a) (4	(3-j2)(2+j) = a+jb	
	b) (1	$(2-j3) = \sqrt{a+jb}$	
	c) (.	(x - j4y) + (y - j5x) = 2 + j3	
	Session 4 (3 hrs): Addition a	nd subtraction in polar form	
	Show that it is not possible to a must be converted into Cartesi	add or subtract directly in polar form. Each complex number ian form and then converted back to Polar form.	
	Example:		
	Evaluate in polar form.		
	5	$5 \angle -45^\circ + 2 \angle 30^\circ - 4 \angle 120^\circ$	
	5	$5 \angle -45^\circ = 5(\cos - 45^\circ + j\sin - 45^\circ)$	
	=	$= 5cos - 45^\circ + j5sin - 45^\circ$	
	<u>3</u>	3.54 - j3.54	
	2	$2 \angle 30^\circ = 2(\cos 30^\circ + j\sin 30^\circ)$	

Lesson 5: Complex Numbers in Engineering

Suggested Teaching Time: 15 hours

Торіс		Suggested Teaching	Suggested Resources
		$= 2cos30^{\circ} + j2sin30^{\circ}$	
		$4 \angle 120^\circ = 4(\cos 120^\circ + j\sin 120^\circ)$	
		$= 4cos120^{\circ} + j4sin120^{\circ}$	
		= <u>-2.0 + j3.46</u>	
		$5 \angle -45^\circ + 2 \angle 30^\circ - 4 \angle 120^\circ$	
		= (3.54 - j3.54) + (1.73 + j1.0) - (-2.0 + j3.46)	
		= 7.27 - j6.0 Which is in the 4 th quadrant	
		$\sqrt{7.27^2+6.2^2} \angle \tan^{-1}\frac{6.0}{7.27}$	
		$=$ <u>9.43\angle - 39.45°</u>	
	Evaluate in polar form		
	a)	$4 \angle 30^{\circ} + 3 \angle 22.5^{\circ}$	
	b)	$5.8 \angle 58^\circ + 3 \angle 135^\circ - 3 \angle - 40^\circ$	
	State that there are many and current theory and vector ar positive direction by 90 ⁰ and	pplications of complex numbers particularly in alternating nalysis. In ac theory multiplying a phasor by <i>j</i> rotates in a d multiplying a phasor by $-j$ rotates it through-90 ⁰	

SCHEME OF WORK LEVEL 4 DIPLOMA IN MECHANICAL ENGINEERING

UNIT 401 ENGINEERING MATHEMATICS

Lesson 5: Complex Numbers in Engineering

Suggested Teaching Time: 15 hours

Торіс	Suggested Teaching	Suggested Resources
	Example 1	
	Determine the resistance and series inductance (capacitance) of the following impedances	
	a) $(6+j8)\Omega$	
	Resistance = 6Ω	
	Reactance = $8\Omega = X_L$	
	Because the imaginary part is positive then the reactance is inductive.	
	The inductance $XL = 2\pi fl$	
	$\therefore L = \frac{X_L}{2\pi f} = \frac{8}{2\pi 50}$	
	$= \underline{0.025H}$	

Lesson 5: Complex Numbers in Engineering

Suggested Teaching Time: 15 hours

Торіс	Suggested Teaching	Suggested Resources
	b) —j5	
	$Z = (0 - j35)$ the resistance = 0 and the reactance = 35 Ω . The imaginary part is negative so the reactance is capacitive.	
	$X_{\mathcal{C}}=35\Omega$ and	
	$X_{\mathcal{C}} = \frac{1}{2\pi f \mathcal{C}}$	
	$C = rac{1}{2\pi(50)(35)} imes 10^6$	
	$=$ 90.9 μ F	
	Example 2	
	A 250V,50Hz supply is connected across an impedance of $(30 - j50)\Omega$	
	Determine the:	
	a) Resistance	
	 b) Capacitance c) Magnitude of the impedance and its phase angle 	
	d) Current flowing	

Lesson 5: Complex Numbers in Engineering

Suggested Teaching Time: 15 hours

Торіс	Suggested Teaching	Suggested Resources
	a) Resistance = 30Ω	
	b) Capacitance = $\frac{1}{2\pi(50)(50)} \times 10^6$	
	$= 63.65 \mu F$	
	c) Impedance = $ Z = \sqrt{30^2 + (-50)^2} = 58.3\Omega$	
	Phase angle $arg. Z tan^{-1} \left[\frac{-50}{30} \right] = 59.04^{\circ}$	
	d) Current flowing $= I = \frac{v}{Z} = \frac{230 \angle 0^{\circ}}{58.3 \angle -59.04}$	
	$=$ (3.95 \angle 059.04°A)	
	Seccion 5 (2 km); Do Moinmelo Theorem	
	Session 5 (3 nrs): De Molvre S Theorem	
	De Moivre's theorem	
	State that the theorem is used to determine powers and roots of complex numbers.	
	$r \angle heta imes r \angle heta = r^2 \angle 2 heta$	
	i.e. $(r \angle \theta)^n = r^n \angle n \theta$	

Lesson 5: Complex Numbers in Engineering

Suggested Teaching Time: 15 hours

Торіс		Suggested Teaching	Suggested Resources
	Example 1		
	Express in polar form	$(4\angle 32^\circ)^3 = 4^3\angle 3\times 32^\circ$	
		= <u>64∠96°</u>	
	Example 2		
	Determine the value of (6 +	- j 7) in polar and rectangular form	
		$-6 + j7 = \sqrt{(-6)^2 + (7)^2} \angle tan^{-1} \frac{7}{-6}$	
		$=\sqrt{85} \angle 130.6^{\circ}$ 180° - 49 . 4 ° 2nd quadrant	
	Using De Moivre's		
		$(-6+j7)^4 = \left(\sqrt{85} \angle 130.6^\circ\right)^4$	
		$=\sqrt{85^4}\angle 4\times 130.6^\circ$	
		= 7225∠522.4°	
		$= 7225 \angle 162.4^{\circ} \qquad (522.4 - 360 = 162.4)$	
		$r \angle \theta = r cos \theta + j r sin \theta$	
		$7225 \angle 162.4^{\circ} = 7225 cos 162.4^{\circ} + j7225 sin 162.4^{\circ}$	
		= <u>-6886.8 + j2184.6</u>	

Lesson 5: Complex Numbers in Engineering

Suggested Teaching Time: 15 hours

Торіс	Suggested Teaching	Suggested Resources
	Examples:	
	Express each of the following in polar and rectangular form	
	a) $(5+j6)^3$	
	b) $(3 - j8)^5$	
	c) $(-2+j7)^4$	
	Session 6 (3 hrs): Roots of complex numbers	
	Show by using De Moivre`s theorem how to determine the square root of a complex number	
	Put $n = \frac{1}{2}$ in the theorem:	
	$\sqrt{r \measuredangle heta} = (r \measuredangle heta)^{rac{1}{2}} = r^{rac{1}{2}} \measuredangle rac{1}{2} heta = \sqrt{r} \measuredangle rac{ heta}{2}$	
	It has two equal roots but opposite in sign	
	Example:	
	Determine the two square roots of the complex number $6 + j10$ in polar and Cartesian forms.	
	$6 + j10 = \sqrt{6^2 + 10^2} \angle \tan^{-1} \frac{10}{6}$	
	= <u>11.66∠59.04</u> °	

Lesson 5: Complex Numbers in Engineering

Suggested Teaching Time: 15 hours

Торіс	Suggested Teaching	Suggested Resources
	Two solutions occur to obtain the second solution the first and second roots have the same	
	modulus but displaced 180 [°] from the first root. $\frac{360}{2}$	
	First root	
	$(6+j10)^{\frac{1}{2}} = \sqrt{11.66} \angle \frac{1}{2} \times 59.04^{\circ}$	
	= <u>3.42∠29.52°</u>	
	Second root	
	$=\sqrt{11.66} \angle \frac{360+59.04}{2}$	
	= 3.42∠209.52°	
	or second root could have been found by	
	$3.42 \angle (180 + 29.52) = 3.42 \angle 209.52^{\circ}$	
	Cartesian form	
	$3.42 \angle 29.52^{\circ} = 3.42(cos29.52^{\circ} + jsin29.52^{\circ})$	
	= <u>2.98 + j1.69</u>	
	$3.42 \angle 209.52^{\circ} = 3.42(cos209.52^{\circ} + jsin209.52^{\circ})$	
	= <u>-2.98 - j1.69</u>	
	Cartesian form $= \pm (2.98 + j1.69)$	

SCHEME OF WORK LEVEL 4 DIPLOMA IN MECHANICAL ENGINEERING

UNIT 401 ENGINEERING MATHEMATICS

Lesson 5: Complex Numbers in Engineering

Suggested Teaching Time: 15 hours

Торіс	Suggested Teaching	Suggested Resources
	Determine the square roots of each of the following complex numbers in Cartesian form a) $3 - j4$ b) $-1 - j2$ c) $-6 - j5$	