Qualification at a glance

<table>
<thead>
<tr>
<th>Subject area</th>
<th>Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>City & Guilds number</td>
<td>9209</td>
</tr>
<tr>
<td>Age group approved</td>
<td>18+</td>
</tr>
<tr>
<td>Entry requirements</td>
<td>To take this qualification, learners should have achieved the 9209 Level 4 Diploma in Engineering or a suitable equivalent.</td>
</tr>
</tbody>
</table>

Assessment
- Assignments: externally set by City & Guilds, internally marked by centres, externally verified.
- Dated entry written exam papers

Fast track
- N/A

Support materials
- Centre handbook
- Assessment pack
- Assessor guidance
- Sample exam questions
- Online tutor and learner support material (Smartscreen)

Registration and certification
- Consult the Walled Garden/Online catalogue for last dates

Title and level

<table>
<thead>
<tr>
<th>Title and level</th>
<th>GLH</th>
<th>TQT</th>
<th>City & Guilds number</th>
<th>Accreditation number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 5 Advanced Technician Diploma in Electrical and Electronic Engineering</td>
<td>510</td>
<td>765</td>
<td>9209-12</td>
<td>601/5554/1</td>
</tr>
</tbody>
</table>
Amendments made to the document

<table>
<thead>
<tr>
<th>Document version and date</th>
<th>Change detail</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 2014 v1.1</td>
<td>NLH added</td>
<td>Individual units Entry requirements</td>
</tr>
<tr>
<td></td>
<td>Entry requirements</td>
<td></td>
</tr>
<tr>
<td>January 2015 v1.3</td>
<td>Age 18+</td>
<td>Page 2 and Section 3 Individual units</td>
</tr>
<tr>
<td></td>
<td>UAN added</td>
<td></td>
</tr>
<tr>
<td></td>
<td>QAN added</td>
<td></td>
</tr>
<tr>
<td>February 2015 v2</td>
<td>Updates to some learning outcomes and assessment criteria and updated range</td>
<td>Individual units</td>
</tr>
<tr>
<td></td>
<td>Test specification information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Question paper resources if applicable</td>
<td></td>
</tr>
<tr>
<td>April 2015 v2</td>
<td>Test Specifications amended (501, 505, 506, 507, 508, 509, 510, 511)</td>
<td>Assessment</td>
</tr>
<tr>
<td>November 2015 v3</td>
<td>Test Specifications amended 501, 502, 505, 508, 511</td>
<td>Assessment</td>
</tr>
<tr>
<td></td>
<td>Updated range on 501, 506, 508</td>
<td>Individual Units</td>
</tr>
<tr>
<td>March 2017 v5</td>
<td>Updated range on 501</td>
<td>Individual Unit</td>
</tr>
<tr>
<td></td>
<td>Resource requirements</td>
<td>Delivering the qualification</td>
</tr>
<tr>
<td>October 2017 v6.1</td>
<td>Added TQT details</td>
<td>Qualification at a glance, Structure</td>
</tr>
<tr>
<td>March 2018 v6.2</td>
<td>Clarification</td>
<td>Entry requirements</td>
</tr>
</tbody>
</table>
Contents

1 Introduction 5
2 Structure 6
3 Centre requirements 8
 Approval 8
 Resource requirements 8
 Learner entry requirements 9
4 Delivering the qualification 10
 Initial assessment and induction 10
 Support materials 10
5 Assessment 11
6 Grade profile 22
7 Units 25
 Unit 501 Advanced mathematics for electrical and electronic engineering 26
 Unit 502 Electrical and electronic engineering principles 28
 Unit 503 Engineering project 31
 Unit 504 Project management 34
 Unit 505 Instrumentation and control systems 37
 Unit 506 Electronic communication systems 41
 Unit 507 Digital design 46
 Unit 508 Principles of signal processing 50
 Unit 509 Principles and operation of electrical machines 54
 Unit 510 Analogue design 58
 Unit 511 Electronic materials science 62
 Unit 512 Business management 66
Appendix 1 Sources of general information 70
1 Introduction

This document tells you what you need to do to deliver the qualification.

In the table below is an outline of this qualification at a glance.

<table>
<thead>
<tr>
<th>Area</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who is this the qualification for?</td>
<td>This Advanced Technician Diploma is aimed at learners who</td>
</tr>
<tr>
<td></td>
<td>• wish to gain employment as an advanced Engineering Technician</td>
</tr>
<tr>
<td></td>
<td>• wish to progress into higher level Engineering qualifications</td>
</tr>
<tr>
<td></td>
<td>• intend to advance into third year of a selected university engineering degree programme.</td>
</tr>
<tr>
<td></td>
<td>It also aims to contribute to recognition by professional institutions.</td>
</tr>
<tr>
<td>What does this qualification cover?</td>
<td>It allows learners to learn, develop and practise the advanced skills required for employment, career progression or university progression in the engineering sector.</td>
</tr>
<tr>
<td></td>
<td>It will also allow learners to build their knowledge of the principles of mathematics, science and technologies that underpin engineering.</td>
</tr>
<tr>
<td>Who did we develop the qualification with?</td>
<td>Please refer to our recognition list on our website.</td>
</tr>
<tr>
<td>What opportunities for progression are there?</td>
<td>It allows learners to progress into employment, university or to the following City & Guilds qualifications:</td>
</tr>
<tr>
<td></td>
<td>• 9210-01 Level 6 Graduate Diploma in Engineering or other equivalent City & Guilds qualifications.</td>
</tr>
</tbody>
</table>
Structure

To achieve the **Level 5 Advanced Technician Diploma in Electrical and Electronic Engineering** learners must achieve the 2 mandatory units and a minimum of 6 optional units.

<table>
<thead>
<tr>
<th>City & Guilds unit number/UAN</th>
<th>Unit title</th>
<th>GLH</th>
<th>NLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 501 R/506/9276</td>
<td>Advanced mathematics for electrical and electronic engineering</td>
<td>85</td>
<td>200</td>
</tr>
<tr>
<td>Unit 502 D/506/9278</td>
<td>Electrical and electronic engineering principles</td>
<td>91</td>
<td>200</td>
</tr>
<tr>
<td>Optional units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 503 Y/506/9280</td>
<td>Engineering project</td>
<td>20</td>
<td>200</td>
</tr>
<tr>
<td>Unit 504 D/506/9264</td>
<td>Project management</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>Unit 505 D/506/9281</td>
<td>Instrumentation and control systems</td>
<td>89</td>
<td>150</td>
</tr>
<tr>
<td>Unit 506 H/506/9282</td>
<td>Electronic communication systems</td>
<td>72</td>
<td>150</td>
</tr>
<tr>
<td>Unit 507 K/506/9283</td>
<td>Digital design</td>
<td>58</td>
<td>150</td>
</tr>
<tr>
<td>Unit 508 M/506/9284</td>
<td>Principles of signal processing</td>
<td>113</td>
<td>200</td>
</tr>
<tr>
<td>Unit 509 T/506/9285</td>
<td>Principles and operation of electrical machines</td>
<td>96</td>
<td>200</td>
</tr>
<tr>
<td>Unit 510 A/506/9286</td>
<td>Analogue design</td>
<td>162</td>
<td>150</td>
</tr>
<tr>
<td>Unit 511 J/506/9288</td>
<td>Electronic materials science</td>
<td>95</td>
<td>150</td>
</tr>
<tr>
<td>Unit 512 J/506/9291</td>
<td>Business management</td>
<td>45</td>
<td>100</td>
</tr>
</tbody>
</table>
Total Qualification Time

Total Qualification Time (TQT) is the total amount of time, in hours, expected to be spent by a Learner to achieve a qualification. It includes both guided learning hours (which are listed separately) and hours spent in preparation, study and assessment.

<table>
<thead>
<tr>
<th>Title and level</th>
<th>GLH</th>
<th>TQT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 5 Advanced Technician Diploma in Electrical and Electronic Engineering</td>
<td>510</td>
<td>765</td>
</tr>
</tbody>
</table>
3 Centre requirements

Approval
If there is no fast track approval for this qualification, existing centres who wish to offer this qualification must use the standard Qualification Approval Process.

Resource requirements

Physical resources and site agreements
The equipment, systems and machinery must meet industrial standards and be capable of being used under normal working conditions.

Centre staffing
Staff delivering this qualification must be able to demonstrate that they meet the relevant occupational expertise requirements, i.e., they should be occupationally competent or technically knowledgeable in the areas for which they are delivering training with experience of providing training. This knowledge must be to the same level as the training being delivered. Trainers must also

- hold or be working towards a recognised training qualification.
- have recent relevant experience in the specific area they will be assessing.
- have credible experience of providing training.

Centre staff may undertake more than one role, e.g., tutor and assessor or internal quality assurer, but cannot internally verify their own assessments.

Assessors and Internal Quality Assurer

Assessors
Although not specifically required for this qualification, City & Guilds recommends that Assessors hold, or are working towards, the relevant Level 3 TAQA qualification, covering the assessment types required for this qualification. Further information about the City & Guilds TAQA qualification can be found at www.cityandguilds.com. Assessors must be able to demonstrate clear experience in assessing learning and understand City & Guilds’ quality assurance requirements. They must also have the required industry certification and experience as outlined above.

Internal Verifiers / Internal Quality Assurers
Although not specifically required for this qualification, City & Guilds recommends that Internal Verifiers / Internal Quality Assurers hold, or are working towards, the Level 4 TAQA qualification. Further information about the City & Guilds TAQA qualification can be found at www.cityandguilds.com. Internal Verifiers / Internal Quality Assurers must be able to demonstrate clear experience in quality assurance processes and understand City & Guilds’ specific quality assurance requirements. They must also have the required industry certification and experience as outlined above.
Continuing professional development (CPD)

Centres must support their staff to ensure that they have current knowledge of the occupational area, that delivery, mentoring, training, assessment and verification is in line with best practice, and that it takes account of any national or legislative developments.

Learner entry requirements

Learners should already hold a Level 4 Diploma in Engineering or equivalent in order to complete the qualification satisfactorily.

Age restrictions

City & Guilds cannot accept any registrations for learners under 18 years of age.
4 Delivering the qualification

Initial assessment and induction
An initial assessment of each learner should be made before the start of their programme to identify:
- if the learner has any specific training needs,
- support and guidance they may need when working towards their qualification.
- any units they have already completed, or credit they have accumulated which is relevant to the qualification.
- the appropriate type and level of qualification.

We recommend that centres provide an induction programme so the learner fully understands the requirements of the qualification, their responsibilities as a learner, and the responsibilities of the centre. This information can be recorded on a learning contract.

Support materials
The following resources are available for this qualification:

<table>
<thead>
<tr>
<th>Description</th>
<th>How to access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample exam questions</td>
<td>www.cityandguilds.com</td>
</tr>
<tr>
<td>Sample schemes of work</td>
<td>www.smartscreen.co.uk</td>
</tr>
<tr>
<td>Further reading /links</td>
<td>www.cityandguilds.com</td>
</tr>
<tr>
<td>Equipment lists</td>
<td>www.cityandguilds.com</td>
</tr>
<tr>
<td>Recognition lists</td>
<td>www.cityandguilds.com</td>
</tr>
</tbody>
</table>
5 Assessment

Units 503, 504 and 512 are assessed by assignments set by City & Guilds, internally marked by centres and externally verified. These assignments are graded Pass, Merit and Distinction.

All the remaining units are assessed by dated entry written paper, which are also graded Pass, Merit and Distinction. Exam dates are available on the Catalogue and Walled Garden.

The assessments have all been developed with input from experts in the industry.

Please refer to the Assessor Guidance on www.cityandguilds.com for general assessment guidance for this qualification.

Summary of assessment requirements

To achieve this qualification, candidates will be required to complete the following assessments successfully:

- one dated entry written exam for each mandatory unit 501 and 502
- one assignment for each chosen optional unit assessed by assignment
- one dated entry written exam for each chosen optional unit assessed by dated entry written exam.

City & Guilds provides the following assessments:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Title</th>
<th>Assessment methodology</th>
<th>Where to obtain assessments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9209-502</td>
<td>Electrical and electronic engineering principles</td>
<td>Dated entry written exam paper 9209-502</td>
<td>Sample exam questions on www.cityandguilds.com</td>
</tr>
<tr>
<td>Code</td>
<td>Unit Title</td>
<td>Description</td>
<td>Website</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>9209-503</td>
<td>Engineering project</td>
<td>Assignment 9209-503 This assignment covers all the learning outcomes in this unit. Assignment set by City & Guilds, internally marked, externally verified</td>
<td>www.cityandguilds.com</td>
</tr>
<tr>
<td>9209-504</td>
<td>Project management</td>
<td>Assignment 9209-504 This assignment covers all the learning outcomes in this unit. Assignment set by City & Guilds, internally marked, externally verified</td>
<td>www.cityandguilds.com</td>
</tr>
<tr>
<td>9209-505</td>
<td>Instrumentation and control systems</td>
<td>Dated entry written exam paper 9209-505</td>
<td>Sample exam questions on www.cityandguilds.com</td>
</tr>
<tr>
<td>9209-506</td>
<td>Electronic communication systems</td>
<td>Dated entry written exam paper 9209-506</td>
<td>Sample exam questions on www.cityandguilds.com</td>
</tr>
<tr>
<td>9209-507</td>
<td>Digital design</td>
<td>Dated entry written exam paper 9209-507</td>
<td>Sample exam questions on www.cityandguilds.com</td>
</tr>
<tr>
<td>9209-508</td>
<td>Principles of signal processing</td>
<td>Dated entry written exam paper 9209-508</td>
<td>Sample exam questions on www.cityandguilds.com</td>
</tr>
<tr>
<td>9209-509</td>
<td>Principles and operation of electrical machines</td>
<td>Dated entry written exam paper 9209-509</td>
<td>Sample exam questions on www.cityandguilds.com</td>
</tr>
<tr>
<td>9209-510</td>
<td>Analogue design</td>
<td>Dated entry written exam paper 9209-510</td>
<td>Sample exam questions on www.cityandguilds.com</td>
</tr>
<tr>
<td>9209-511</td>
<td>Electronic materials science</td>
<td>Dated entry written exam paper 9209-511</td>
<td>Sample exam questions on www.cityandguilds.com</td>
</tr>
<tr>
<td>9209-512</td>
<td>Business management</td>
<td>Assignment 9209-512 This assignment covers all the learning outcomes in this unit. Assignment set by City & Guilds, internally marked, externally verified</td>
<td>www.cityandguilds.com</td>
</tr>
</tbody>
</table>
Unit assessment overview

Assignments
The following tables are designed to offer a summarised overview of how the tasks in each assignments demonstrate achievement of the assessment criteria in the units.

Unit 503 Engineering project

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Assessment Criteria</th>
<th>Task duration</th>
<th>Grading</th>
<th>Weighting per task</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Identify and be able to research workplace problems. Produce project plans and proposals for improvements or developments (demonstrate effective and appropriate communication skills)</td>
<td>1.1, 1.2, 2.1, 2.2, 2.3</td>
<td>6 hours</td>
<td>P / M / D / X</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Source information, concepts and principles relevant to engineering problems (Apply underlying concepts and principles of their area of study to address an identified engineering problem or issue)</td>
<td>3.1, 3.2</td>
<td>5 hours</td>
<td>P / M / D / X</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Select project methods to address objectives (Evaluate different approaches to the problem or issue identified)</td>
<td>4.1, 4.2, 4.3</td>
<td>4 hours</td>
<td>P / M / D / X</td>
<td>1</td>
</tr>
</tbody>
</table>
Task Description

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Assessment Criteria</th>
<th>Task duration</th>
<th>Grading</th>
<th>Weighting per task</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Execute the project (Initiate and use strategies to address an identified engineering issue)</td>
<td>5.1, 5.2, 5.3, 5.4</td>
<td>4 hours</td>
<td>P / M / D / X</td>
<td>1</td>
</tr>
</tbody>
</table>

Unit 504 Project management

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Assessment Criteria</th>
<th>Task duration</th>
<th>Grading</th>
<th>Weighting per task</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Report: The Principles of Project Management</td>
<td>1.1, 1.2, 2.1, 3.1, 3.2, 3.3, 4.1</td>
<td>4 hours</td>
<td>P / M / D / X</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Research Task: Project Management Case Study</td>
<td>2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 4.2</td>
<td>6 hours</td>
<td>P / M / D / X</td>
<td>1</td>
</tr>
</tbody>
</table>

Unit 512 Business management

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Assessment criteria</th>
<th>Task duration</th>
<th>Grading</th>
<th>Weighting per task</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Improve business performance</td>
<td>6.1, 5.3, 5.4, 3.2, 6.2, 6.3</td>
<td>20 hours</td>
<td>P / M / D / X</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Evaluating and assessing organisations’ policies, procedures and processes</td>
<td>1.2, 1.3, 4.2, 4.4</td>
<td>15 hours</td>
<td>P / M / D / X</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Analyse the benefits of knowledge management to an engineering organisation</td>
<td>5.2</td>
<td>8 hours</td>
<td>P / M / D / X</td>
<td>1</td>
</tr>
</tbody>
</table>
Dated entry written exam papers
Test specifications for the dated entry written exam papers are included here.

Test specifications
The way the knowledge is covered by each test is laid out in the tables below:

Test: 9209-501 Advanced mathematics for electrical and electronic engineering
Duration: 3 hours
Grading: Pass/Merit/Distinction

<table>
<thead>
<tr>
<th>Unit</th>
<th>Outcome</th>
<th>Number of questions</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>501</td>
<td>1. be able to use calculus to solve engineering problems</td>
<td>4</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>2. be able to apply numerical analysis to solve engineering problems</td>
<td>3</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>3. understand mathematical expressions used in waveform descriptions</td>
<td>3</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>10</td>
<td>100</td>
</tr>
</tbody>
</table>

Test: 9209-502 Electrical and electronic engineering principles
Duration: 3 hours
Grading: Pass/Merit/Distinction

<table>
<thead>
<tr>
<th>Unit</th>
<th>Outcome</th>
<th>Number of questions</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>502</td>
<td>1. understand complex dc networks</td>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>2. understand the response of RLC circuits to alternating wave forms</td>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>3. understand the concepts of electromagnetic theory</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>4. be able to analyse electrical systems when modelled as two-port networks</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>10</td>
<td>100</td>
</tr>
</tbody>
</table>
Test: 9209-505 Instrumentation and control systems

Duration: 3 hours
Grading: Pass/Merit/Distinction

<table>
<thead>
<tr>
<th>Unit</th>
<th>Outcome</th>
<th>Number of questions</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>505</td>
<td>1. understand instrumentation sensors for measurement</td>
<td>4</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>2. understand instrumentation systems</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>3. be able to mathematically model parts of a physical control system</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>4. understand the stability of a control system</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>5. be able to design stable feedback control systems</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>11</td>
<td>100</td>
</tr>
</tbody>
</table>

Test: 9209-506 Electronic communication systems

Duration: 3 hours
Grading: Pass/Merit/Distinction

<table>
<thead>
<tr>
<th>Unit</th>
<th>Outcome</th>
<th>Number of questions</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>506</td>
<td>1. understand the fundamental principles of electronic communications for data transmission</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>2. understand the fundamental principles of analogue communication systems</td>
<td>3</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>3. understand the fundamental principles of digital communication systems</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>4. understand point-to-point communication systems</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>5. understand communication systems applications</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>12</td>
<td>100</td>
</tr>
</tbody>
</table>
Test: 9209-507 Digital design
Duration: 3 hours
Grading: Pass/Merit/Distinction

<table>
<thead>
<tr>
<th>Unit</th>
<th>Outcome</th>
<th>Number of questions</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>507</td>
<td>1. understand logic circuits</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2. understand the design of combinational logic circuits</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>3. understand the design of sequential logic circuits</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>4. understand the function and uses of current digital technologies</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>5. understand microcontroller fundamentals</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>9</td>
<td>100</td>
</tr>
</tbody>
</table>

Test: 9209-508 Principles of signal processing
Duration: 3 hours
Grading: Pass/Merit/Distinction

<table>
<thead>
<tr>
<th>Unit</th>
<th>Outcome</th>
<th>Number of questions</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>508</td>
<td>1. understand the key concepts of signals and signal processing</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>2. understand fundamental approaches to signal processing at an elementary level</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>3. understand signal processing properties and functions</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>4. understand the processing required in signal reception</td>
<td>3</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>10</td>
<td>100</td>
</tr>
</tbody>
</table>
Test: 9209-509 Principles and operation of electrical machines

Duration: 3 hours
Grading: Pass/Merit/Distinction

<table>
<thead>
<tr>
<th>Unit</th>
<th>Outcome</th>
<th>Number of questions</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>509</td>
<td>1. understand the operation of three phase transformers</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2. understand the operation of three-phase induction machines</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>3. understand the operation of three-phase synchronous machines</td>
<td>3</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>4. understand commonly occurring fault conditions in electrical supply systems</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>5. understand variable frequency a.c. motor drive systems and their applications</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>10</td>
<td>100</td>
</tr>
</tbody>
</table>

Test: 9209-510 Analogue design

Duration: 3 hours
Grading: Pass/Merit/Distinction

<table>
<thead>
<tr>
<th>Unit</th>
<th>Outcome</th>
<th>Number of questions</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>510</td>
<td>1. understand the operation of electronically controlled power supplies</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2. understand amplifier circuit designs for different classes of operation</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>3. understand operational amplifier circuit designs</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>4. understand oscillator circuit designs</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>5. understand active filter circuit designs</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>6. understand the operation of data converters</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>7. be able to apply Simulation Program with Integrated Circuit Emphasis (SPICE) software to evaluate circuit performance.</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>11</td>
<td>100</td>
</tr>
</tbody>
</table>
Test: 9209-511 Electronic materials science
Duration: 3 hours
Grading: Pass/Merit/Distinction

<table>
<thead>
<tr>
<th>Unit</th>
<th>Outcome</th>
<th>Number of questions</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>511</td>
<td>1. understand dielectric behaviour of materials</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>2. understand the electronic properties of solids</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>3. understand semi-conduction in solids</td>
<td>4</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>4. understand magnetic behaviour of materials</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>11</td>
<td>100</td>
</tr>
</tbody>
</table>

Question paper resources
The following examinations papers will require resource materials as listed below.

<table>
<thead>
<tr>
<th>Unit no.</th>
<th>Required source material (required on day of exam)</th>
<th>City & Guilds or third party</th>
<th>Cost if third party</th>
<th>How to access</th>
</tr>
</thead>
</table>
| 501 | Mathematical formulae | City & Guilds | n/a | www.cityandguilds.com
Copies will be provided with exam question answer booklets. It is recommended to print a copy from the 9209 webpage to use throughout the course. |
| 502 | Smith chart paper | City & Guilds | n/a | Will be provided in the exam question answer booklets, where applicable. |
| 505 | Laplace Transforms | City & Guilds | n/a | www.cityandguilds.com
Copies will be provided with exam question answer booklets. It is recommended to print a copy from the 9209 webpage to use throughout the course. |
| 508 | Laplace transforms and Z transforms | City & Guilds | n/a | www.cityandguilds.com
Copies will be provided with exam question answer booklets. It is recommended to print a copy from the 9209 webpage to use throughout the course. |
Time constraints

The following time constraints must be applied to the assessments of this qualification:

- each assignment has specific time constraints; please refer to the individual assignments and to the Assessor Guidance. Centre staff should guide learners to ensure excessive evidence gathering is avoided. Centres finding that assignments are taking longer, should contact the Qualification consultant for guidance.
- all assignments must be completed and assessed within the learner’s period of registration. Centres should advise learners of any internal timescales for the completion and marking of individual assignments.
- all dated entry written exam papers must be sat within the learner’s period of registration.

Assessment strategy

City & Guilds provide sample questions for each unit assessed by dated entry written exam paper. The purpose of these sample questions is to provide examples of the type of question that will be set, giving an indication of the breadth and depth of knowledge that is expected. It...
should be noted that these are sample questions and not a full sample question paper.

Dated entry examinations will take place twice a year, in June and November/December, with the first exam series being November/December 2015.

Recognition of prior learning (RPL)

Recognition of prior learning means using a person's previous experience or qualifications which have already been achieved to contribute to a new qualification.

RPL is not allowed for this qualification.
6 Grade profile

Purpose and use of this qualification grade profile

City & Guilds has taken the decision to grade the individual assessments included in this qualification, and provide a grade associated with each unit. This decision is based on market research with employers and colleges that suggests grading can be of use both as a motivational tool within the learning environment, and also to learners presenting evidence of their skills to prospective employers.

For this reason, the tasks have been developed to extend learners beyond the minimum required for Pass. As a basis for developing the tasks and their related grading criteria, City & Guilds consulted a number of stakeholders to discover what the grades at each level should mean in practice, and how they might be used. The following descriptors are based on that consultation.

The descriptors were used in the development of the task grading criteria and should be used by assessors to understand the intended outcomes of the grading.

They should be referred to during the centre’s standardising exercises in addition to the specific grading criteria for the unit to support a consistent understanding of the standard across units, centres and assessors. The grades achieved by a learner would be considered by universities for subsequent entry into the correct year of a degree programme.

Aims

The Level 4 and 5 Diplomas in Engineering focus on advanced engineering, with a wide choice of units to provide a flexible route to career success as a professional engineer. The qualifications have been developed closely with both industry and the deliverers of learning in order to ensure fitness for purpose.

Both Level 4 and Level 5 for this qualification are presented here to allow comparison and better understanding of progression.

Levels

Level 4

The Level 4 Diplomas in Engineering focus on advanced engineering. The learners will have the potential to fulfil a role within Engineering that requires a high level of responsibility, for example within first level management, requiring the use of personal initiative and critical judgement.

Holders of these qualifications may also be able to advance into the second year of a selected university engineering degree programme.
Level 5
The Level 5 Advanced Technician Diplomas in Engineering focus on advanced engineering. The learner will have the potential to fulfil a role within Engineering that requires a high level of responsibility, for example leading to middle management and/or project management, requiring the use of personal initiative and critical judgement.

Holders of these qualifications may also be able to advance into the third year of a selected university engineering degree programme.

To take this qualification a learner must first achieve the 9209 Level 4 Diploma in Engineering.

Both levels are also ideal for people wanting to advance as an Engineering technician within the fields of Mechanical Engineering, Electrical and Electronic Engineering, or Civil Engineering.

Delivery of learning
Learning is delivered by approved colleges and training providers in simulated learning environments, not in the workplace. Learners will however have access to real work environments in which to further develop the breadth of their skills and their experience.

Grading
The majority of tasks are graded Pass / Merit / Distinction. Pass reflects the minimum requirements that are expressed in the unit, with Merit and Distinction showing progression in skills and knowledge as well as recognising behaviours important to the industry.

<table>
<thead>
<tr>
<th>Pass</th>
<th>Merit</th>
<th>Distinction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 4</td>
<td>Learner:</td>
<td>Learner:</td>
</tr>
<tr>
<td></td>
<td>Capable of making informed decisions, likely to have achieved a grade at Level 3 (Merit / Distinction), starting to have sufficient skills to bring value to the industry, is becoming comfortable with occupational systems and procedures.</td>
<td>Broader understanding of systems and procedures, can work with minimal guidance, determination to resolve issues, taking ownership and responsibility for own learning, desire to progress.</td>
</tr>
<tr>
<td>Evidence:</td>
<td>Complex tasks may present some challenge, partial attempt at assessment, well defined tasks completed with a level of guidance, able to follow the required process, acceptable.</td>
<td>Full attempt at assessment, well defined tasks completed with minimal guidance, able to follow the required process, higher level skills / knowledge / competence displayed for the</td>
</tr>
<tr>
<td>Pass</td>
<td>Merit</td>
<td>Distinction</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>skills / knowledge / competence displayed for the industry, can plan, can solve problems. Limited reflection on the outcomes of the task.</td>
<td>industry, can plan, can solve problems more effectively and confidently. Sufficient reflection on the outcomes of the task.</td>
<td>improvement / alternatives.</td>
</tr>
</tbody>
</table>

Level 5 Learner:

Capable of making informed decisions, likely to have achieved a grade at Level 4 (Merit / Distinction), has sufficient skills to bring value to the industry, is fairly comfortable with occupational systems and procedures.

Evidence:

Complex tasks may present some challenge, but most assessments attempted, well defined tasks completed with a level of guidance, able to follow the required process, acceptable skills / knowledge / competence displayed for the industry, can plan, can solve problems. Satisfactory reflection on the outcomes of the task.

Learner:

Full understanding of systems and procedures, can work with minimal to no guidance, determination to resolve issues, taking ownership and responsibility for own learning, desire to excel.

Evidence:

Full attempt at assessment, well defined tasks completed with minimal guidance, able to follow the required process, higher level skills / knowledge / competence displayed for the industry, can plan, can solve problems more effectively and confidently. Good reflection on the outcomes of the task.

Learner:

High level of understanding, evaluation and competence in overall systems and procedures, clearly achieving a higher level of academic study. Has an ability to carry out tasks without guidance and shows own initiative.

Evidence:

Full achievement of assessment completely independently, within the time given, ie efficient use of time. Detailed / in-depth reflection on the outcomes of the task with recommendations for improvement / alternatives.
7 Units

Structure of units
These units each have the following:
- City & Guilds reference number
- title
- level
- UAN (Unit Accreditation Number)
- guided learning hours
- unit aim
- relationship to NOS, other qualifications and frameworks
- endorsement by a sector or other appropriate body
- information on assessment
- learning outcomes which are comprised of a number of assessment criteria
- notes for guidance.
Unit 501
Advanced mathematics for electrical and electronic engineering

<table>
<thead>
<tr>
<th>Level:</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAN:</td>
<td>R/506/9276</td>
</tr>
<tr>
<td>GLH:</td>
<td>85</td>
</tr>
<tr>
<td>NLH:</td>
<td>200</td>
</tr>
<tr>
<td>Assessment method:</td>
<td>Dated written paper</td>
</tr>
<tr>
<td>Aim:</td>
<td>The purpose of this unit is to enable learners to develop knowledge and understanding of advanced mathematical techniques and be able to apply them to the solution of electrical and electronic engineering problems. Through this unit, learners will develop an understanding of calculus and numerical analysis as well as mathematical expressions used in waveform descriptions.</td>
</tr>
</tbody>
</table>

Learning outcome
The learner will:
1. be able to use calculus to solve engineering problems.

Assessment criteria
The learner can:
1.1 evaluate partial derivatives for a function of several variables
1.2 obtain Laplace transforms for complex functions
1.3 obtain the inverse Laplace transforms for complex functions
1.4 obtain integrals of complex functions
1.5 form ordinary differential equations for solving problems
1.6 solve ordinary differential equations.

Range

Partial derivatives
First- and second-order partial derivatives; the chain rule for partial derivatives, total differential, gradient, divergence, curl

Complex functions
Algebraic and trigonometric functions; Heaviside function, Dirac delta function; first and second order differential equations

Integrals
Indefinite, definite, standard

Ordinary differential equations
First order (variables separable; exact equations; linear equations using an integrating factor), second order (initial and boundary value problems; complementary functions and particular integrals)
Learning outcome

The learner will:

2. be able to apply numerical analysis to solve engineering problems.

Assessment criteria

The learner can:

2.1 use numerical **iterative methods** to find the roots of a function

2.2 apply **numerical methods** for the solution of **ordinary differential equation models** of engineering systems

2.3 apply **iterative numerical methods** to the solution of partial differential equation models of engineering systems

2.4 represent numerical values on **diagrams**.

Range

Iterative methods
- Bisection method; Secant method; Newton’s method

Numerical methods
- Euler and improved Euler; Taylor series; Runge-Kutta; forward, backward and central finite difference methods

Ordinary differential equation models
- Initial value problems, boundary value problems

Iterative numerical methods
- Finite difference methods for partial differential equations including forward, backward and central difference methods; solution of sets of linear equations by Jacobi iterative method; Gauss-Seidel iterative method

Diagrams
- Bode, Nyquist, Nichols, log log, Argand

Learning outcome

The learner will:

3. understand mathematical expressions used in waveform descriptions

Assessment criteria

The learner can:

3.1 analyse a **periodic** waveform using mathematical expressions

3.2 analyse a **basic waveform** description using orthogonal functions

3.3 analyse a random waveform using elements of **probability theory**

3.4 analyse an **aperiodic** waveform using mathematical expressions.

Range

Expressions (Periodic)
- Polynomial, Taylor series, Fourier Series, vectors

Basic waveform
- Square, triangular, saw-tooth, exponential, pulse waveforms

Probability theory
- Joint and conditional probabilities, probability density function, autocorrelation function, power spectral density function

Expressions (Aperiodic)
- Fourier transforms, Laplace transforms, pole-zero description, vectors
Unit 502 Electrical and electronic engineering principles

Level: 5
UAN: D/506/9278
GLH: 91
NLH: 200
Assessment method: Dated written paper

Aim: The purpose of this unit is to extend and deepen learners understanding of the principles of electrical and electronic engineering. These principles form the foundation for further study of more specialist applications of electrical and electronic engineering. Through this unit, learners will develop their understanding of complex dc networks, the response of RLC circuits to alternating wave forms and performance of multi-port networks. Learners will apply the understanding they develop to solve related electrical and electronic engineering problems.

Learning outcome
The learner will:
1. understand complex dc networks

Assessment criteria
The learner can:
1.1 model an equivalent circuit for resistor-capacitor-inductor circuits
1.2 evaluate performance limits of dc circuits under design conditions
1.3 evaluate circuit performance under variable conditions.

Range
Performance limits
Current, power transfer
dc circuits
Series, parallel, series-parallel
Performance
Quality of circuit components, power supply, signal input, circuit tolerance
Conditions
Temperature, voltage, power supply, current, ripple, step change
Learning outcome

The learner will:
2. understand the response of RLC circuits to alternating wave forms

Assessment criteria

The learner can:
2.1 model dynamic **RLC circuits**
2.2 analyse **frequency** responses of tuned **RLC circuits**
2.3 analyse power factor correction requirements
2.4 evaluate the transient effect on RLC circuits
2.5 evaluate the practical use of transient effect.

Range

RLC circuits
Series, parallel, series-parallel

Frequency
Tuned, harmonics, sub-harmonics, second, third

Learning outcome

The learner will:
3. understand the concepts of electromagnetic theory

Assessment criteria

The learner can:
3.1 analyse **static electric fields**
3.2 analyse **static magnetic fields**
3.3 evaluate **time changing electric and magnetic fields**
3.4 solve problems involving **electromagnetic waves and transmission lines**.

Range

Static electric fields
The force between point charges, Coulomb’s Law, electric field intensity, the electric field of several point charges, electric vectors

Static magnetic fields
Magnetic (dipoles, loops and solenoids), permeability, magnetic vectors, magnetic effects on electric currents

Time changing electric and magnetic fields
Faraday’s Law (derived line integral form), Stoke’s Theorem, Maxwell’s equations, application of circuit and field theory

Electromagnetic waves and transmission lines
Coaxial, Two-wire and Field cell transmission lines, the infinite uniform transmission line, impedance of transmission lines, reflection coefficient, slotted line, Smith chart, scattering parameters
Learning outcome

The learner will:

4. be able to analyse electrical systems when modelled as two-port networks

Assessment criteria

The learner can:

4.1 convert circuit values using **parameters** from different models
4.2 solve problems involving **gain** of two-port model networks.

Range

Parameters

Z (impedance model); Y (admittance model) and h (hybrid model); elementary matrix algebra

Gain

Low frequency; mid-band; high frequency
Unit 503 Engineering project

Level: 5
UAN: Y/506/9280
GLH: 20
NLH: 200
Assessment method: Assignment
Aim: The purpose of this unit is to enable learners to
• apply underlying concepts and principles of their area of study to address an identified engineering problem or issue
• evaluate different approaches to the problem or issue identified
• initiate and use strategies to address an identified engineering issue
• demonstrate effective and appropriate communication skills.

Learning outcome
The learner will:
1. be able to research engineering problems

Assessment criteria
The learner can:
1.1 investigate processes, practices or structures in engineering to identify an area for development
1.2 propose project ideas.

Learning outcome
The learner will:
2. be able to set project objectives

Assessment criteria
The learner can:
2.1 identify information required for inclusion in the engineering project proposals
2.2 produce project proposals to **required scope**
2.3 produce project objectives.

Range
Required scope
Generate new focussed information about the problem or issue; increase efficiency; improve customer satisfaction; deliver services more effectively; improvements in quality and output; increase organisation competitive edge; opportunities to expand services; more flexibility; other (to be specified in proposal)
Learning outcome
The learner will:
3. be able to source information, concepts and principles relevant to engineering problems

Assessment criteria
The learner can:
3.1 review theories and practices relevant to **engineering project proposal**
3.2 select key **sources of data and information** to support project.

Range
Engineering project proposal
Determined by sector / subject

Sources of data and information
Quantitative and qualitative information; relevant materials; published research

Learning outcome
The learner will:
4. be able to select project methods to address objectives

Assessment criteria
The learner can:
4.1 evaluate the strengths of **methods** in relation to project objectives
4.2 justify selected method(s) used to address project objectives
4.3 identify strategies appropriate to carry out selected method.

Range
Methods
Qualitative research (may include interviews; forums; observation; shadowing; research journal articles, books); quantitative research (may include small sample surveys; questionnaires, sector data, organisational data); application / test of a theory; examination / evaluation of a process
<table>
<thead>
<tr>
<th>Learning outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner will:</td>
</tr>
<tr>
<td>5. be able to execute a project</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner can:</td>
</tr>
<tr>
<td>5.1 produce work plans to meet objectives</td>
</tr>
<tr>
<td>5.2 implement work plans</td>
</tr>
<tr>
<td>5.3 review work plan, adjusting timescales and deliverables accordingly.</td>
</tr>
<tr>
<td>5.4 prepare a report on the results obtained during project execution</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work plan must</td>
</tr>
<tr>
<td>• include phases and tasks</td>
</tr>
<tr>
<td>• include task distribution</td>
</tr>
<tr>
<td>• include project requirements against objectives</td>
</tr>
<tr>
<td>• include time constraints</td>
</tr>
<tr>
<td>• use SMART principles</td>
</tr>
<tr>
<td>• record objectives in project plan</td>
</tr>
</tbody>
</table>
Unit 504 Project management

Level: 5
UAN: D/506/9264
GLH: 50
NLH: 150
Assessment method: Assignment

Aim: The purpose of this unit is to enable learners to develop an understanding of the principles of project management and how projects are set up. Learners will gain an understanding of how to mitigate for risks and develop their skills in using management tools to monitoring and reviewing projects.

Learning outcome
The learner will:
1. understand why organisations use project management.

Assessment criteria
The learner can:
1.1 describe the principles of project management
1.2 explain the benefits of project management to organisations and individuals.

Range
Principles
Business justification; learning from experience; defined roles and responsibilities; manage by stages; manage by exception; focus on products; objectives; constraints; lifecycle

Benefits
Possible benefits will include: Increased efficiency; improved customer satisfaction; organisations may be more effective in delivering services; improvements in quality and output; development opportunities within the project team; increase in an organisation's competitive edge; opportunities to expand services; more flexibility; improved Risk Assessment
Learning outcome

The learner will:

2. understand how to set up projects.

Assessment criteria

The learner can:

2.1 explain the **considerations** when reviewing project proposals
2.2 explain **how to set clear goals** for projects
2.3 analyse project **resource requirements**
2.4 explain **how roles and responsibilities are allocated** within project teams
2.5 identify project **communication needs**
2.6 assess **possible risks** to successful completion of projects
2.7 explain how to **mitigate** for possible risks.

Range

Considerations

Financial viability of the project; time; legal; resource; budget; constraints; dependencies; confidentiality eg restrictions in relation to the Data Protection Act, who has access to data and project documentation

How to set clear goals

Identify stakeholders; identify needs; use SMART principles; record goals in project plans

Resource requirements

Project requirements against goals; time constraints; budget; human resources; training needs; communication needs; IT requirements

How roles and responsibilities are allocated

Use of experts from different areas of the organisation; use of key stakeholders; identify training needs; meeting schedules; timing of reports

Communication needs

Formal/informal communication; identifying who requires communication e.g. stakeholders, management, team members

Possible risks

Safety issues; optimistic time and cost estimates; unexpected budget costs; unclear roles and responsibilities; stakeholder needs not sought; changing requirements after the start of the project; new requirements; poor communication; lack of commitment

Mitigate

Health and safety training; regular project review meetings; appropriate communication; training and monitoring
Learning outcome
The learner will:

3. be able to use management tools to maintain, control and monitor projects

Assessment criteria
The learner can:

3.1 describe different **management tools** for monitoring and control of projects
3.2 justify the use of management tools for monitoring and controlling projects
3.3 use management tools to **monitor** projects.

Range
Management tools
Progress reports; budget monitoring reports; GANTT charts; Critical Path Analysis; use of relevant and current project software packages

Monitor
Updating task status; re-scheduling uncompleted tasks; updating project elements

Learning outcome
The learner will:

4. be able to review projects at all stages

Assessment criteria
The learner can:

4.1 explain **reasons** for reviewing projects after completion
4.2 review projects against original proposals.

Range
Reasons
Improve future projects; enables ability to learn from experience; identify key resources for future projects; ensures comparison against achievements to original objectives; highlights any issues e.g. health and safety, problems, training needs, shortages in terms of resources, increases in costs, allows for the ability to revise and update plans, enables completion of an end of project report
Unit 505
Instrumentation and control systems

Level: 5
UAN: D/506/9264
GLH: 89
NLH: 150
Assessment Method: Dated Written Paper

Aim: The purpose of this unit is to extend and deepen learners understanding of instrumentation and control engineering. Through this unit, learners will develop their understanding of advanced instrumentation systems and in particular acquire the mathematical and analytical tools to understand and design control systems.

Learning outcome
The learner will:
1. understand instrumentation sensors for measurement

Assessment criteria
The learner can:
1.1 calculate parameters of an orifice plate
1.2 calculate the volumetric flow rate through a venturi nozzle.
1.3 calculate parameters of measurement transducers
1.4 analyse the operation of electro-magnetic level sensors
1.5 explain the operating principle of Linear Variable Differential Transformer (LVDT)
1.6 explain how error correction is achieved using a Gray coded angular position encoder
1.7 analyse the different wiring configurations for Resistance Temperature Detectors (RTDs)
1.8 explain how Steinhart-Hart is used for calibrating of thermistor.

Range
Parameters
Pressure, volume flow rate, diameter.
Measurement
Level, pressure, temperature, load, displacement
Learning outcome
The learner will:
2. understand instrumentation systems.

Assessment criteria
The learner can:
2.1 analyse the function of elements of instrumentation systems
2.2 design a signal conditioning system for a multiple sensor Gray coded input.

Range
Elements
Multiplexer, computer, display, sensor, transducer

Learning outcome
The learner will:
3. be able to mathematically model parts of a physical control system

Assessment criteria
The learner can:
3.1 derive the differential equation for a complex physical system
3.2 derive a differential equation model for an underdamped system using an electrical or mechanical analogy
3.3 derive the Laplace transformation for a complex physical system
3.4 derive the transfer function of a complex linear system.

Range
Differential equation
First order, second order
Complex physical system
Mass-spring-damper system, rotational mass, rotational damper, fluid inertia, fluid resistance, RLC circuit

Learning outcome
The learner will:
4. understand the stability of a control system

Assessment criteria
The learner can:
4.1 evaluate the stability of linear feedback systems
4.2 evaluate the stability of linear feed forward systems
4.3 analyse the frequency response of a feedback control system
4.4 explain how the transfer function relates to the operation of three term controllers (PID)
4.5 tune a PID controller using the Ziegler-Nichols methodology.
<table>
<thead>
<tr>
<th>Learning outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner will:</td>
</tr>
<tr>
<td>5. be able to design stable feedback control systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner can:</td>
</tr>
<tr>
<td>5.1 design a simple compensated stable control system</td>
</tr>
<tr>
<td>5.2 analyse compensated stable control systems.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyse compensated</td>
</tr>
<tr>
<td>Series, parallel and external (input/output) by block diagrams, transfer functions.</td>
</tr>
</tbody>
</table>
Unit 505 Instrumentation and control systems
Supporting information

Evidence requirements:
1.3 Each 'measure' should be assessed each time

Guidance
This unit contains advanced mathematical concepts and should not be attempted without thorough background knowledge of the necessary mathematical theory.
Unit 506
Electronic communication systems

Level: 5
UAN: H/506/9282
GLH: 72
NLH: 150

Assessment method: Dated written paper

Aim: The purpose of this unit is for learners to develop an understanding of analogue and digital communications systems at the signal and subsystem level. Topics include the relationship between time domain and frequency domains, bandwidth requirements of various modulation schemes and noise effects.

<table>
<thead>
<tr>
<th>Learning outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner will:</td>
</tr>
<tr>
<td>1. understand the fundamental principles of electronic communications for data transmission.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner can:</td>
</tr>
<tr>
<td>1.1 explain how the elements contribute to a communication system</td>
</tr>
<tr>
<td>1.2 evaluate different types of transmission media for different applications</td>
</tr>
<tr>
<td>1.3 evaluate the relative advantages and disadvantages of analogue and digital transmission</td>
</tr>
<tr>
<td>1.4 explain how to reduce noise and interference from different sources</td>
</tr>
<tr>
<td>1.5 explain the factors which affect signal quality in data transmission</td>
</tr>
<tr>
<td>1.6 explain the effects of bandwidth limitations on data transmission.</td>
</tr>
</tbody>
</table>
Range

Elements
Tuner, mixer, modulator, amplifier, detector, demodulator, oscillator, radio communications system

Types
Coaxial cable, twisted pair (shielded and unshielded), optical fibre (step index, graded index), radiowaves, microwaves, infrared, transmitting/receiving components

Applications
Satellite, telephone, television, radio, data transmission

Advantages and disadvantages
Information theory; Electromagnetic interference (EMI); radio spectrum

Transmission
Satellite, telephones, radio, data

Different sources
Intrinsic, extraneous

Factors
Resistance, radiation, dielectric material, electromagnetic interference (EMI)

Transmission
Analogue, digital

Effects
Interference, crosstalk, SNR reduction, Baud rate limitations, Shannon-Hartley Theorem, Nyquist theorem, Nyquist Bit Rate.

Learning outcome
The learner will:
2. understand the fundamental principles of analogue communication systems

Assessment criteria
The learner can:
2.1 explain how analogue techniques are used to modulate signal transmission
2.2 explain how analogue techniques are used to demodulate signal transmission
2.3 calculate analogue spectra from the modulated wave
2.4 plot analogue spectra from the modulated wave
2.5 explain the function of electronic circuit elements in analogue communication systems.
Range

Techniques
Amplitude (AM), frequency (FM), Angle (phase) modulation (PM), Quadrature (QAM), frequency spectrum, phasor representation, power, DSB, SSB, DSB-SC, SSB-SC, PCM, phase locked loops (PLL), AM – envelope/diode detector, synchronous/product detector, FM – phase disc discriminator

Signal
Baseband (a.f.), heterodyning (i.f.), carrier (r.f.)

Spectra
AM and FM (modulated signals, bandwidth, sidebands)

Modulated
Message signal, carrier wave

Elements
Tuner, mixer, modulator, amplifier, detector, demodulator, oscillator, phase locked loops (PLL)

Learning outcome
The learner will:
3. understand the fundamental principles of digital communication systems

Assessment criteria
The learner can:
3.1 explain how digital techniques are used to modulate signal transmission
3.2 explain how digital techniques are used to demodulate signal transmission
3.3 explain digital transmission issues and errors
3.4 calculate spectra from the modulated wave
3.5 plot spectra from the modulated wave
3.6 explain the function of electronic circuit elements in digital communication systems.

Range

Techniques
Sampling theorem, Nyquist rate, aliasing, Binary PAM, Duobinary PAM, M-ary signalling schemes, Binary ASK (coherent, noncoherent), Binary PSK (coherent, differentially coherent), Binary FSK (coherent, noncoherent), error control coding (ECC)

Signal
Baseband (data), carrier (r.f.)

Issues and errors
Noise; error rate; error correction

Spectra
AM, FM and FSK (modulated signals, bandwidth, sidebands)

Modulated
Message signal, carrier wave

Elements
Source encoder, channel encoder, modulator, demodulator, channel decoder, source decoder
Learning outcome
The learner will:
4. understand point-to-point communication systems

Assessment criteria
The learner can:
4.1 evaluate methods of multiplexing for data channel sharing
4.2 represent the operation of a point-to-point communication system as a block diagram.

Range
Methods
Time Division Multiplexing (TDM); Frequency Division Multiplexing (FDM), Asynchronous TDM, Code Division Multiplexing (CDM)
System
Multiplex, non-multiplex

Learning outcome
The learner will:
5. understand communication systems applications

Assessment criteria
The learner can:
5.1 explain telephone communication systems applications
5.2 explain radio communication systems for different purposes
5.3 explain how the elements contribute to television communication systems
5.4 evaluate types of satellite orbit for specific applications
5.5 describe satellite communication systems.

Range
Telephone
PSTN, Cellular (mobile) network
System
Transmitter, receiver
Purposes
Type of data transmitted, location of sender and receiver
Elements
Luminance, chrominance, scanning, tuner, time base, sound channel, video channel, primary colour filters, colour signal mixing, display (CRT, LCD, PDP)
Television communication systems
Monochrome, colour, infrared
Orbit
Geostationary, low-earth-orbiting, Molniya, elliptical, mid-earth-orbiting
Satellite
Telephone, TV, radio, Internet, transport navigation, military
Unit 506
Electronic communication systems

Supporting information

Guidance
Noise in Baseband systems, SNR, Noise in Modulation systems, noise figure, noise temperature, interference in modulation systems
[Shannon-Hartley theorem]
Unit 507 Digital design

Level: 5
UAN: K/506/9283
GLH: 58
NLH: 150
Assessment method: Dated written paper
Aim: The purpose of this unit is to provide learners with an understanding of logic design and logic synthesis tools. On completion of this unit, learners will be able to apply their understanding to the design, simulation, analysis and verification of moderately complex digital circuits.

Learning outcome
The learner will:
1. understand logic circuits.

Assessment criteria
The learner can:
1.1 explain integrated circuit design for logic functions using electronic components, for different logic families
1.2 assess the suitability of semi-conductor families for a circuit specification
1.3 explain how the input/output characteristics are produced in logic systems.
1.4 assess operational performance of different logic family variants.

Range
Logic functions
AND; OR; NOT; EXOR; NAND; NOR
Families
CMOS, TTL
Input/output
Tri-state output, Schmitt trigger operation
Operational performance
Speed, power, cost and interface requirements
Variants
High speed, low-power, low voltage supply CMOS
Learning outcome

The learner will:

2. understand the design of combinational logic circuits

Assessment criteria

The learner can:

2.1 simplify Boolean functions for the design of glitch-free logic circuits

2.2 determine minimised solutions to 4 and 5 input Boolean expressions using the laws of Boolean algebra

2.3 illustrate minimised Boolean expressions as universal gates

2.4 design a combinational logic circuit for real-world applications.

Range

Logic circuits

Full adders, BCD-to-Decimal decoder, Priority Encoders, hardware multiplier

Laws

Commutative; associative; distributive; duality; de Morgan

Universal gates

NAND, NOR

Learning outcome

The learner will:

3. understand the design of sequential logic circuits

Assessment criteria

The learner can:

3.1 explain the operation of different types of sequential logic devices

3.2 analyse state diagrams for the operation of sequential circuits

3.3 produce state-transition tables for sequential logic devices and their state diagrams

3.4 design sequential logic devices to meet specifications.

Range

Types

Synchronous, Asynchronous

Logic devices

Shift Register, RAM, Bidirectional Register, Digital delay line, Sequence Generator, Ring Counter

State diagrams

Mealy machine, Moore machine
Learning outcome
The learner will:
4. understand the function and uses of current digital technologies

Assessment criteria
The learner can:
4.1 explain typical **digital technologies** and their limitations
4.2 explain the concepts of Moore’s Law and its limitation.

Range
Digital Technologies
VLSI; FPGA; PSoC; Flash memory; Static RAM

Learning outcome
The learner will:
5. understand microcontroller fundamentals

Assessment criteria
The learner can:
5.1 explain the functions of **microcontroller fundamentals**
5.2 explain the functions of the **three main areas** of micro-processor systems
5.3 explain simple microcontroller design.

Range
Microcontroller fundamentals
Computer architecture ALU, CPU Von Neumann structure, ALU, key components elements, Fetch- execute cycles, Accumulator, data and program memory, program counter, clock and I/O, fetch- execute cycles, control unit

Three main areas
CPU, Memory, I/O
Unit 507 Digital design
Supporting information

Evidence requirements
To assessment team
Outcome 2: AC e
Real-world situation example: 4-sensor automatic safety-guard cut-out

Outcome 4: AC d
Simple microprocessor design using architecture diagrams

Guidance
Purpose
Number of gates on an IC, reduction in number of IC's, reduce redundancy, power consumption, speed, costs, size of final circuit.

Methods
Algebraic methods; graphical methods (Karnaugh Mapping and variable entry mapping (VEM) techniques)

Simple microprocessor
The Intel 8-bit 8051, or similar
Unit 508 Principles of signal processing

Level: 5
UAN: M/506/9284
GLH: 113
NLH: 200
Assessment method: Dated written paper

Aim: This unit provides an introduction to the theory of signal analysis and linear signal processing. It provides learners with a sound understanding of the fundamental concepts, advantages and limitations of digital signal processing and the physical significance of the algorithms.

Learning outcome
The learner will:
1. understand the key concepts of signals and signal processing

Assessment criteria
The learner can:
1.1 analyse sampled-data signals using mathematical expressions
1.2 analyse random signals using mathematical expressions
1.3 analyse the application of complex numbers in signal processing
1.4 analyse the types of random signals
1.5 compare signals using different methods.

Range
Mathematical expressions
Discrete Fourier transform, fast Fourier transform, Laplace transform, the z-transform, probability density functions, amplitude distributions and moments, the autocorrelation function, Weiner-Kinchin, power spectral density function

Types
Stationary, ergodic, Gaussian, random binary, binomial, poisson, pseudo-random

Methods
Cross-correlation function, auto-correlation function, cross-spectral density function
<table>
<thead>
<tr>
<th>Learning outcome</th>
<th>The learner will:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. understand fundamental approaches to signal processing at an elementary level</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment criteria</th>
<th>The learner can:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.1 analyse the processing approach to linear systems</td>
</tr>
<tr>
<td></td>
<td>2.2 analyse the processing approach to random signals</td>
</tr>
<tr>
<td></td>
<td>2.3 analyse the processing approach to Nonlinear systems.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach</td>
</tr>
<tr>
<td>Frequency-domain (Fourier), time-domain, Z-plane analysis; convolution, correlation and filtering, Bode plot</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning outcome</th>
<th>The learner will:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3. understand signal processing properties and functions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment criteria</th>
<th>The learner can:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.1 analyse the signal sampling process</td>
</tr>
<tr>
<td></td>
<td>3.2 analyse the signal reconstitution process</td>
</tr>
<tr>
<td></td>
<td>3.3 analyse modulation processes.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling</td>
</tr>
<tr>
<td>Dirac pulses, spectrum</td>
</tr>
<tr>
<td>Reconstitution</td>
</tr>
<tr>
<td>Filter, impulse response</td>
</tr>
<tr>
<td>Modulation</td>
</tr>
<tr>
<td>Signal truncation, amplitude modulation, frequency modulation, Pulse-Code modulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning outcome</th>
<th>The learner will:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4. understand the processing required in signal reception</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment criteria</th>
<th>The learner can:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.1 analyse filter performance in the processing of signals</td>
</tr>
<tr>
<td></td>
<td>4.2 analyse the concepts involved in signal recovery</td>
</tr>
<tr>
<td></td>
<td>4.3 analyse methods for signal detection</td>
</tr>
<tr>
<td></td>
<td>4.4 analyse signal prediction.</td>
</tr>
<tr>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Filters</td>
<td></td>
</tr>
<tr>
<td>Analogue: Reactive, Butterworth, Chebychev, Bessel, Elliptic</td>
<td></td>
</tr>
<tr>
<td>Digital: Finite impulse response, Infinite impulse response, Wiener, Kalman</td>
<td></td>
</tr>
</tbody>
</table>

Concepts
Signals in wide-band noise, signals in narrow-band noise, signal averaging, optimum signal estimation, signal to noise ratio

Methods
The matched filter, pulse compression techniques

Prediction
The Wiener predictor
Unit 508 Principles of signal processing
Supporting information

Guidance
This unit contains advanced mathematical concepts and should not be attempted without thorough background knowledge of the necessary mathematical theory.
Unit 509

Principles and operation of electrical machines

<table>
<thead>
<tr>
<th>Level:</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAN:</td>
<td>T/506/9285</td>
</tr>
<tr>
<td>GLH:</td>
<td>96</td>
</tr>
<tr>
<td>NLH:</td>
<td>200</td>
</tr>
<tr>
<td>Assessment method:</td>
<td>Dated written paper</td>
</tr>
</tbody>
</table>

Aim:
The purpose of this unit is to enable learners to develop a further understanding of electrical machines and systems in engineering operations. The focus of the unit is on three phase transformers, induction motors, and synchronous machines.

Learning outcome

The learner will:
1. understand the operation of three phase transformers

Assessment criteria

The learner can:

1.1 evaluate the use of **tapchangers** for voltage control
1.2 evaluate the method of three phase power transformer earth fault detection using current transformers
1.3 evaluate the Buchholz relay system of transformer protection
1.4 calculate on-load transformer heating and cooling times
1.5 calculate efficiencies and regulation of loaded transformers from equivalent circuit parameters derived from test values.

Range

Tapchangers

Off-line, online, manual, automatic, solid state (thyristor)
Learning outcome
The learner will:
2. understand the operation of three-phase induction machines

Assessment criteria
The learner can:
2.1 determine **practical values** for equivalent circuits
2.2 evaluate the **performance** of three phase induction motors
2.3 solve problems involving induction machines.

Range
Practical values
Stator resistance, stator leakage reactance, stator loss components,
rotor resistance, rotor leakage reactance
Performance
Copper losses, input/output powers, slip frequency vs speed of rotation, efficiency, maximum power factor, maximum torque, circle diagrams

Learning outcome
The learner will:
3. understand the operation of three-phase synchronous machines

Assessment criteria
The learner can:
3.1 analyse the **performance** of an ideal synchronous machine using phasor diagrams
3.2 produce an operating chart for a three phase cylindrical machine
3.3 determine the load share for parallel operation of three phase alternators
3.4 explain the conditions for synchronising three phase alternators to infinite busbars
3.5 understand how a three-phase synchronous machine can be started using a variable –frequency supply
3.6 understand how a three-phase synchronous machine can be started as an induction motor
3.7 determine an equivalent circuit
3.8 solve problems involving synchronous machines.

Range
Performance
Offload or onload
Learning outcome
The learner will:
4. understand commonly occurring fault conditions in electrical supply systems

Assessment criteria
The learner can:
4.1 calculate values of short circuit levels for symmetrical faults
4.2 express circuit parameters as symmetrical components
4.3 calculate values of short circuit levels for asymmetrical faults.

Range
Levels
kVA, MVA

Symmetrical faults
Line-line-line, line-line-line-earth

Circuit parameters
Currents, voltages and impedances

Asymmetrical faults
Line-line, line-line-earth, line-earth

Learning outcome
The learner will:
5. understand variable frequency AC motor drive systems and their applications

Assessment criteria
The learner can:
5.1 explain the operation of power switching devices
5.2 analyse the operation of three-phase bridge inverters
5.3 analyse pulse width modulated inverter systems for induction motors
5.4 analyse the harmonic content of inverter output waveforms.

Range
power switching devices
TRIACs, DIACs, transistors, firing circuits

three-phase bridge inverters
Voltage source inverters, current source inverters

inverter systems
Sinusoidal PWM, space vector PWM, gear changing

Applications
a.c. generator, e.g. fuel cell thermo-electric, magneto-hydrodynamic (MHD), constant speed operation, power factor control
Unit 509
Principles and operation of electrical machines

Supporting information

Evidence requirements:
1.1 The calculation will also require the fault current calculated as part of this calculation
3.1 Data should be provided for this AC

Guidance
1.1 The calculation will also require the fault current calculated as part of this calculation
2.1 Standards phasor diagrams doesn't have to be BS standards but the standards used in a host country
Unit 510 Analogue design

Level: 5
UAN: A/506/9286
GLH: 162
NLH: 150
Assessment method: Dated written paper
Aim: The purpose of this unit is to provide learners with an understanding of standard analogue electronic circuit configurations, including the design of power supplies, operational amplifiers applications and oscillators.

<table>
<thead>
<tr>
<th>Learning outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner will:</td>
</tr>
<tr>
<td>1. understand the operation of electronically controlled power supplies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner can:</td>
</tr>
<tr>
<td>1.1 evaluate types of power supply for different applications</td>
</tr>
<tr>
<td>1.2 analyse the purpose of electronic components used in power supplies.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Types</td>
</tr>
<tr>
<td>Purpose</td>
</tr>
<tr>
<td>Electronic components</td>
</tr>
</tbody>
</table>
Learning outcome

The learner will:

2. understand amplifier circuit designs for different classes of operation

Assessment criteria

The learner can:

2.1 explain the **types of amplifier classification**
2.2 analyse different types of **class A** amplifier circuit design
2.3 analyse types of **class B** amplifier circuit design
2.4 analyse types of **class C** amplifier circuit design.

Range

Types of amplifier classification

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
<td>Fully stabilised voltage amplifier, Tuned amplifier, push-pull design, Use of Darlington pair, Linsley-Hood class A amplifier, output characteristics, biasing</td>
</tr>
<tr>
<td>Class B</td>
<td>Class B power stage, Class B Push-pull Transformer Amplifier Circuit, Class B Transformerless Output Stage, Audio Amplifier, output characteristics, biasing</td>
</tr>
<tr>
<td>Class C</td>
<td>Power amplifier, Bridge configuring the output, RF transmitter amplifier, PWM amplifier, output characteristics, biasing</td>
</tr>
</tbody>
</table>

Learning outcome

The learner will:

3. understand operational amplifier circuit designs

Assessment criteria

The learner can:

3.1 analyse the types of **operational amplifier** circuits
3.2 analyse the **properties of the different types of operational amplifier** configurations
3.3 calculate the component values for the operational amplifier circuit of **specified applications**.

Range

Operational amplifier

Buffer, Inverting, Non-inverting, multi-stage, mixer, adder, differential/subtractor, instrumentation, comparator, integrator

Properties

Ideal Op amp, Gain, input impedance, Zin, output impedance, Zout, input offset voltage, input current, bandwidth, feedback factor, CMRR, slew rate, Gain Bandwidth Product (GBP).

Specified applications

Instrumentation, bridge measurement, comparator, integrator, mixer
Learning outcome
The learner will:
4. understand oscillator circuit designs

Assessment criteria
The learner can:
4.1 analyse the types of oscillator circuits
4.2 analyse the properties of the different types of oscillator configurations
4.3 calculate the component values for the oscillator circuit of specified applications at given frequencies.

Range
Types of Oscillator
R-C, phase-shift, Wien bridge, Tuned collector, Colpitts, Hartley, Twin T, relaxation, crystal, Multivibrators (monostable, bistable and astable)

Properties
Oscillation amplitude, frequency range, frequency stability and drift, phase noise, jitter.

Specified applications
Tuned collector, Colpitts, Hartley, Twin T, relaxation, multivibrators (monostable, bistable and astable), 555 Timer

Learning outcome
The learner will:
5. understand active filter circuit designs

Assessment criteria
The learner can:
5.1 analyse the types of active filters
5.2 analyse the properties of the different types of active filters configurations

Range
Types of active filter
Active low-pass, High-pass, Band-pass, voltage-controlled voltage source (VCVS) switched capacitor cascaded biquads

Properties
Gain, cut-off frequency, component values, -3dB levels. Transfer functions, filter responses stability, sensitivity analysis

Specified applications
Noise rejections, Transmissions & communications, audio and video signals
<table>
<thead>
<tr>
<th>Learning outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner will:</td>
</tr>
<tr>
<td>6. understand the operation of Data Converters</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner can:</td>
</tr>
<tr>
<td>6.1 explain the configurations of converter digital to analogue (D to A) circuitry</td>
</tr>
<tr>
<td>6.2 explain the configurations of converter analogue to digital (A to D) circuitry.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital to analogue (D to A) circuitry</td>
</tr>
<tr>
<td>Binary weighted resistors, digitally controlled switches, ladder type D/A Converter, multiplying D/A Converter</td>
</tr>
<tr>
<td>Analogue to digital (A to D) circuitry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner will:</td>
</tr>
<tr>
<td>7. be able to apply Simulation Program with Integrated Circuit Emphasis (SPICE) software to evaluate circuit performance.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learner can:</td>
</tr>
<tr>
<td>7.1 explain the application of SPICE.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
</tr>
<tr>
<td>SAC analysis (linear small-signal frequency domain analysis), DC analysis (nonlinear quiescent point calculation), DC transfer curve analysis, noise analysis (small signal analysis), transfer function analysis (small-signal input/output gain and impedance), transient analysis</td>
</tr>
</tbody>
</table>
Unit 511 Electronic materials science

<table>
<thead>
<tr>
<th>Level:</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAN:</td>
<td>J/506/9288</td>
</tr>
<tr>
<td>GLH:</td>
<td>95</td>
</tr>
<tr>
<td>NLH:</td>
<td>150</td>
</tr>
<tr>
<td>Assessment method:</td>
<td>Dated written paper</td>
</tr>
</tbody>
</table>

Aim: This unit provides an understanding of the magnetic and electrical behaviour of materials; properties and carrier dynamics of electrons in solids, particularly in semiconductors; the behaviour of metal/semiconductor (ohmic and Schottky) and p-n junctions; and the operation, modelling and design of diodes, transistors and photonic devices.

Learning outcome
The learner will:
1. understand dielectric behaviour of materials

Assessment criteria
The learner can:
1.1 analyse the **properties** of an electric field in **materials**
1.2 analyse the electronic **polarisation** of **materials**
1.3 analyse the **factors** that have an effect on the dielectric properties of **materials**
1.4 analyse **behaviour** that affects the material dielectric property.

Range
Properties
Polarisation, charge density, permittivity

Materials
Liquids, solids, gases

Polarisation
Dipole moments, induced dipoles, permanent dipoles

Factors
Local fields, dielectric constants, temperature, amorphous solids, alternating fields, dielectric losses, electrical insulators

Behaviour
Index of refraction, optical absorption, piezoelectricity, ferroelectricity
Learning outcome
The learner will:
2. understand the electronic properties of solids

Assessment criteria
The learner can:
2.1 analyse the electronic **conductivity** of solids
2.2 analyse the **thermal properties** of solids.

Range

Conductivity
Diffusion model, band model, Fermi energy levels, Fermi distribution, resistivity

Thermal properties
Thermal conductivity, electronic heat capacity, thermal electromotive force, Peltier effect, superconductivity

Learning outcome
The learner will:
3. understand semiconduction in solids

Assessment criteria
The learner can:
3.1 analyse the electrical **properties** of intrinsic semiconductor **materials**
3.2 analyse the electrical **properties** of extrinsic semiconductor **materials**
3.3 analyse the **methods** used in fabrication of integrated circuits
3.4 analyse the **characteristics** of a **semiconductor**
3.5 analyse the **semiconductor characteristics** of different electronic **component** applications.

Range

Properties
Charged particles, field intensity, potential, energy, conductivity, drift velocity, drift current, diffusion current, current density, hall effect, donors and acceptors, mass-action law

Material
Groups II, III, IV, V, VI, II-V, II-VI

Methods
Epitaxial growth, masking and etching, monolithic integrated components (resistors, capacitors, diodes, transistors)

Characteristics
Open-circuited junction, electrical field intensity, avalanche effect, the on resistance, pinch-off, breakdown, cut-off, enhancement structure, depletion structure, drain characteristics

Semiconductor
p-n junction, Field-effect

Component
Diode, Varactor diode, Zener diode, Bipolar transistors, Thyristor, DIAC, TRIAC, JFET, IGFET, MOSFET
Learning outcome
The learner will:
4. understand magnetic behaviour of materials

Assessment criteria
The learner can:
4.1 analyse magnetic properties of materials
4.2 analyse magnetism in materials
4.3 analyse the characteristics of magnets in materials.

Range
Magnetic properties
Magnetisation, magnetic moments

Materials
Solids, liquids

Magnetism
Paramagnetism, diamagnetism, ferromagnetism

Characteristics
Domain, hysteresis loop, soft and hard magnet, permeability, saturation,

Magnets
Metallic, ceramic, permanent, induced magnets
Unit 511 Electronic materials science
Supporting information

Guidance
Semiconductor properties should include: potential-energy barrier, eV unit of energy, carrier mobility, current density, covalent bond, crystal bond impurities, P and N type semiconductors, mass-action law, generation and recombination of charges, determination of mobility

Semiconductor Group materials should include: Silicon, Germanium, Diamond, Carbon, Boron, phosphorous, aluminium, arsenic, gallium, cadmium, tellurium

Fabrication of integrated circuits should include: Basic monolithic integrated circuits, diffusion of impurities, monolithic circuit layout, SSI, MSI, LSI, VLSI

Semiconductor characteristics should include: Volt-ampere (cut-in voltage, logarithmic characteristic, reverse saturation current), temperature dependence, resistance, space-charge or transition capacitance, volt-ampere, transfer curve, analytical expressions

1.3 gases not required
Unit 512
Business management

<table>
<thead>
<tr>
<th>Level:</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAN:</td>
<td>J/506/9291</td>
</tr>
<tr>
<td>GLH:</td>
<td>45</td>
</tr>
<tr>
<td>NLH:</td>
<td>100</td>
</tr>
<tr>
<td>Assessment method:</td>
<td>Assignment</td>
</tr>
<tr>
<td>Aim:</td>
<td>The purpose of this unit is to develop in learners key business management principles and approaches that apply to engineering organisations and processes.</td>
</tr>
</tbody>
</table>

Learning outcome

The learner will:
1. understand how risk is managed in the engineering workplace

Assessment criteria

The learner can:
1.1 evaluate information and data to determine risk levels
1.2 evaluate health and safety policies
1.3 evaluate operating procedures and processes
1.4 recommend how risk is managed.

Range

Information and data

Accident, incident and near miss records, employee data eg working hours, environmental data eg lighting levels

Managed

Remove need, staff training, standard procedures, control of substances and materials, regular inspection, use of (PPE)
Learning outcome

The learner will:

2. understand the management of people in engineering

Assessment criteria

The learner can:

2.1 explain **working relationships** in engineering organisations

2.2 analyse the relationship between employee motivation and business success in engineering

2.3 analyse the effect of **employment contractual issues** on business success

2.4 analyse **human factors** affecting performance in the engineering workplace.

Range

<table>
<thead>
<tr>
<th>Working relationships</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between levels of management, between management and staff, between different functional areas, between organisation and stakeholders</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Employment contractual issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>sub-contractor, zero hours, casual, agency staff</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Human factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working environment, work patterns, work load, employee health, motivation</td>
</tr>
</tbody>
</table>

Learning outcome

The learner will:

3. understand approaches to quality assurance of engineering operations

Assessment criteria

The learner can:

3.1 compare ways in which quality assurance applies in different areas of engineering operations

3.2 review an **area of engineering operations** for weaknesses

3.3 apply quality assurance methods to an area of engineering operation.

Range

<table>
<thead>
<tr>
<th>Areas of engineering operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation, production, maintenance, engineering support functions</td>
</tr>
</tbody>
</table>
Learning outcome

The learner will:

4. understand the effect of change on organisations

Assessment criteria

The learner can:

4.1 explain the factors that contribute to the need for change in organisations
4.2 assess processes for managing change in organisations
4.3 explain the role of leadership and management in the change process
4.4 evaluate the change process in an organisation.

Range

Factors

- Internal (e.g., strategic; organisational; sector led objectives; resources)
- External (PESTLE political; economic; social; technological; legal; environmental)

Processes

Learners should be encouraged to refer to current theories and processes e.g., Kotter’s 8 Steps, Kubler Ross 5 Stage Model.

Learning outcome

The learner will:

5. understand the importance of knowledge management

Assessment criteria

The learner can:

5.1 explain the relationships between data, information, knowledge and wisdom
5.2 analyse the benefits of knowledge management to an organization
5.3 assess knowledge assets of an area within an organisation
5.4 evaluate organisations knowledge management framework.

Range

Data, information, knowledge and wisdom

Data: one off event
Information: when data is added to data
Knowledge: the ability to use the information.
Wisdom: think and act using knowledge, experience and insight

Benefits

Efficient processing of data; positive impact on organisation goals; improved productivity; improved customer service
Learning outcome

The learner will:

6. understand the need for business improvement in organisations

Assessment criteria

The learner can:

6.1 explain **tools** used to improve business performance
6.2 review an area of an organisation for improvement opportunities
6.3 **plan** business improvement for an area of an organisation.

Range

Tools

Learners should be encouraged to refer to current approaches eg six sigma, 5S, Kaizen, process flow analysis

Plan

SMART targets
Appendix 1 Sources of general information

The following documents contain essential information for centres delivering City & Guilds qualifications. They should be referred to in conjunction with this handbook. To download the documents and to find other useful documents, go to the Centres and Training Providers homepage on www.cityandguilds.com.

Centre Guide – Delivering International Qualifications contains detailed information about the processes which must be followed and requirements which must be met for a centre to achieve ‘approved centre’ status, or to offer a particular qualification. Specifically, the document includes sections on:

- The centre and qualification approval process and forms
- Assessment, verification and examination roles at the centre
- Registration and certification of candidates
- Non-compliance
- Complaints and appeals
- Equal opportunities
- Data protection
- Frequently asked questions.
Useful contacts

International learners
General qualification information

Please contact your regional office.
Details can be found at www.cityandguilds.com or alternatively
E: intcg@cityandguilds.com

Every effort has been made to ensure that the information contained in this publication is true and correct at the time of going to press. However, City & Guilds’ products and services are subject to continuous development and improvement and the right is reserved to change products and services from time to time. City & Guilds cannot accept liability for loss or damage arising from the use of information in this publication.

If you have a complaint, or any suggestions for improvement about any of the services that we provide, email: feedbackandcomplaints@cityandguilds.com
About City & Guilds

As the UK’s leading vocational education organisation, City & Guilds is leading the talent revolution by inspiring people to unlock their potential and develop their skills. We offer over 500 qualifications across 28 industries through 8500 centres worldwide and award around two million certificates every year. City & Guilds is recognised and respected by employers across the world as a sign of quality and exceptional training.

City & Guilds Group

The City & Guilds Group operates from three major hubs: London (servicing Europe, the Caribbean and Americas), Johannesburg (servicing Africa), and Singapore (servicing Asia, Australia and New Zealand). The Group also includes the Institute of Leadership & Management (management and leadership qualifications), City & Guilds Licence to Practice (land-based qualifications), the Centre for Skills Development (CSD works to improve the policy and practice of vocational education and training worldwide) and Learning Assistant (an online e-portfolio).

Copyright

The content of this document is, unless otherwise indicated, © The City and Guilds of London Institute and may not be copied, reproduced or distributed without prior written consent. However, approved City & Guilds centres and candidates studying for City & Guilds qualifications may photocopy this document free of charge and/or include a PDF version of it on centre intranets on the following conditions:

- centre staff may copy the material only for the purpose of teaching candidates working towards a City & Guilds qualification, or for internal administration purposes
- candidates may copy the material only for their own use when working towards a City & Guilds qualification

The Standard Copying Conditions (see the City & Guilds website) also apply.

Please note: National Occupational Standards are not © The City and Guilds of London Institute. Please check the conditions upon which they may be copied with the relevant Sector Skills Council.

Published by City & Guilds, a registered charity established to promote education and training

City & Guilds
1 Giltspur Street
London EC1A 9DD

www.cityandguilds.com