9209-501 Mathematical Formula booklet

Candidates should refer to this 501 formula booklet throughout the course and become familiar with it. Candidates will need to use a clean copy of this document for the 9205-501 exam and for the sample questions.

The online version of the full Mathematical handbook can be found at
http://homepage.ntu.edu.tw/~wttsai/MathModel/Mathematical\% 20Formula\% 20Handboo k.pdf
(Please note we have extracted formula which is relevant to this unit. The full online version is not required.)

Contents

1 Series 3Arithmetic and Geometric progressions; Binomial expansion; Taylor and Maclaurin Series;Power series with real variables; Integer series
2 Vector Algebra 5
Scalar product; Equation of a line; Equation of a plane; Vector product
3 Matrix Algebra 6
Unit matrices; Products; Transpose matrices; Inverse matrices; Determinants; 2×2 matrices; Product rules; Orthogonal matrices; Solving sets of linear simultaneous equations; Eigenvalues and eigenvectors; Commutators
4 Vector Calculus 8
Notation; Identities; Grad, Div, Curl and the Lapacian
5 Complex Variables 10
Complex numbers; De Moivre's theorem; Power series for complex variables 6 Trigonometric Formulae 11
Relations between sides and angles of any plane triangle 7 Hyperbolic Functions 12
Relations of the functions; Inverse functions
8 Limits 14
9 Differentiation 15
10 Integration 16Standard forms; Standard substitutions; Integration by parts; Differentiation of an integral;Dirac δ - 'function'; Reduction formulae
11 Differential Equations 19
Diffusion (conduction) equation; Wave equation; Bessel's equation; Laplace's equation 12 Functions of Several Variables 21
Taylor series for two variables; Stationary points; Changing variables: the chain rule;Changing variables in surface and volume integrals - Jacobians13 Fourier Series and Transforms23
Fourier series; Fourier series for other ranges; Fourier series for odd and even functions; Complex form of Fourier series; Discrete Fourier series; Fourier transforms; Convolution theorem
14 Laplace Transforms 27
15 Numerical Analysis 28Finding the zeros of equations; Numerical integration of differential equations; Numericalevaluation of definite integrals

Series

Arithmetic and Geometric progressions

$$
\begin{aligned}
& \text { A.P. } \quad S_{n}=a+(a+d)+(a+2 d)+\cdots+[a+(n-1) d]=\frac{n}{2}[2 a+(n-1) d] \\
& \text { G.P. } \quad S_{n}=a+a r+a r^{2}+\cdots+a r^{n-1}=a \frac{1-r^{n}}{1-r}, \quad\left(S_{\infty}=\frac{a}{1-r} \text { for }|r|<1\right)
\end{aligned}
$$

(These results also hold for complex series.)

Binomial expansion

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots
$$

If n is a positive integer the series terminates and is valid for all x : the term in x^{r} is ${ }^{n} C_{r} x^{r}$ or $\binom{n}{r}$ where ${ }^{n} C_{r} \equiv$ $\frac{n!}{r!(n-r)!}$ is the number of different ways in which an unordered sample of r objects can be selected from a set of n objects without replacement. When n is not a positive integer, the series does not terminate: the infinite series is convergent for $|x|<1$.

Taylor and Maclaurin Series

If $y(x)$ is well-behaved in the vicinity of $x=a$ then it has a Taylor series,

$$
y(x)=y(a+u)=y(a)+u \frac{\mathrm{~d} y}{\mathrm{~d} x}+\frac{u^{2}}{2!} \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\frac{u^{3}}{3!} \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}+\cdots
$$

where $u=x-a$ and the differential coefficients are evaluated at $x=a$. A Maclaurin series is a Taylor series with $a=0$,

$$
y(x)=y(0)+x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\frac{x^{2}}{2!} \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\frac{x^{3}}{3!} \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}+\cdots
$$

Power series with real variables

$$
\begin{array}{ll}
\mathrm{e}^{x} & =1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\cdots \\
\ln (1+x) & =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots+(-1)^{n+1} \frac{x^{n}}{n}+\cdots \\
\cos x & =\frac{\mathrm{e}^{\mathrm{ix}}+\mathrm{e}^{-\mathrm{ix}}}{2}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
\sin x & =\frac{\mathrm{e}^{\mathrm{i} x}-\mathrm{e}^{-\mathrm{ix}}}{2 \mathrm{i}}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots \\
\tan x & =x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}+\cdots \\
\tan ^{-1} x & =x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots
\end{array}
$$

$$
\cos x \quad=\frac{\mathrm{e}^{\mathrm{i} x}+\mathrm{e}^{-\mathrm{i} x}}{2}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \quad \quad \text { valid for all values of } x
$$

$$
\sin x \quad=\frac{\mathrm{e}^{\mathrm{i} x}-\mathrm{e}^{-\mathrm{i} x}}{2 \mathrm{i}}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots \quad \quad \text { valid for all values of } x
$$

$$
\tan x=x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}+\cdots \quad \text { valid for }-\frac{\pi}{2}<x<\frac{\pi}{2}
$$

$$
\sin ^{-1} x=x+\frac{1}{2} \frac{x^{3}}{3}+\frac{1.3}{2.4} \frac{x^{5}}{5}+\cdots \quad \text { valid for }-1<x<1
$$

Integer series

$$
\begin{aligned}
& \sum_{1}^{N} n=1+2+3+\cdots+N=\frac{N(N+1)}{2} \\
& \sum_{1}^{N} n^{2}=1^{2}+2^{2}+3^{2}+\cdots+N^{2}=\frac{N(N+1)(2 N+1)}{6} \\
& \sum_{1}^{N} n^{3}=1^{3}+2^{3}+3^{3}+\cdots+N^{3}=[1+2+3+\cdots N]^{2}=\frac{N^{2}(N+1)^{2}}{4} \\
& \sum_{1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\ln 2 \\
& \sum_{1}^{\infty} \frac{(-1)^{n+1}}{2 n-1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots=\frac{\pi}{4} \\
& \sum_{1}^{\infty} \frac{1}{n^{2}}=1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\cdots=\frac{\pi^{2}}{6} \\
& \sum_{1}^{N} n(n+1)(n+2)=1.2 .3+2.3 .4+\cdots+N(N+1)(N+2)=\frac{N(N+1)(N+2)(N+3)}{4}
\end{aligned}
$$

This last result is a special case of the more general formula,

$$
\sum_{1}^{N} n(n+1)(n+2) \ldots(n+r)=\frac{N(N+1)(N+2) \ldots(N+r)(N+r+1)}{r+2}
$$

Vector Algebra

If i, j, k are orthonormal vectors and $A=A_{x} i+A_{y} j+A_{z} k$ then $|A|^{2}=A_{x}^{2}+A_{y}^{2}+A_{z}^{2}$. [Orthonormal vectors \equiv orthogonal unit vectors.]

Scalar product

$$
\begin{aligned}
A \cdot B & =|\boldsymbol{A}||\boldsymbol{B}| \cos \theta \\
& =A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}=\left[A_{x} A_{y} A_{z}\right]\left[\begin{array}{l}
B_{x} \\
B_{y} \\
B_{z}
\end{array}\right]
\end{aligned}
$$

$$
\text { where } \theta \text { is the angle between the vectors }
$$

Scalar multiplication is commutative: $A \cdot B=B \cdot A$.

Equation of a line

A point $r \equiv(x, y, z)$ lies on a line passing through a point a and parallel to vector b if

$$
r=a+\lambda b
$$

with λ a real number.

Equation of a plane

A point $r \equiv(x, y, z)$ is on a plane if either
(a) $r \cdot \hat{d}=|d|$, where d is the normal from the origin to the plane, or
(b) $\frac{x}{X}+\frac{y}{Y}+\frac{z}{Z}=1$ where X, Y, Z are the intercepts on the axes.

Vector product

$A \times B=n|A||B| \sin \theta$, where θ is the angle between the vectors and n is a unit vector normal to the plane containing A and B in the direction for which A, B, n form a right-handed set of axes.

$$
\begin{array}{cc}
A \times B \text { in determinant form } A \times B \text { in matrix form } \\
\left|\begin{array}{ccc}
i & j & k \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right| & {\left[\begin{array}{ccc}
0 & -A_{z} & A_{y} \\
A_{z} & 0 & -A_{x} \\
-A_{y} & A_{x} & 0
\end{array}\right]\left[\begin{array}{l}
B_{x} \\
B_{y} \\
B_{z}
\end{array}\right]}
\end{array}
$$

Vector multiplication is not commutative: $A \times B=-B \times A$.

Matrix Algebra

Unit matrices

The unit matrix I of order n is a square matrix with all diagonal elements equal to one and all off-diagonal elements zero, i.e., $(I)_{i j}=\delta_{i j}$. If A is a square matrix of order n, then $A I=I A=A$. Also $I=I^{-1}$.
I is sometimes written as I_{n} if the order needs to be stated explicitly.

Products

If A is a $(n \times l)$ matrix and B is a $(l \times m)$ then the product $A B$ is defined by

$$
(A B)_{i j}=\sum_{k=1}^{l} A_{i k} B_{k j}
$$

In general $A B \neq B A$.

Transpose matrices

If A is a matrix, then transpose matrix A^{T} is such that $\left(A^{T}\right)_{i j}=(A)_{j i}$.

Inverse matrices

If A is a square matrix with non-zero determinant, then its inverse A^{-1} is such that $A A^{-1}=A^{-1} A=I$.

$$
\left(A^{-1}\right)_{i j}=\frac{\text { transpose of cofactor of } A_{i j}}{|A|}
$$

where the cofactor of $A_{i j}$ is $(-1)^{i+j}$ times the determinant of the matrix A with the j-th row and i-th column deleted.

Determinants

If A is a square matrix then the determinant of $A,|A|(\equiv \operatorname{det} A)$ is defined by

$$
|A|=\sum_{i, j, k, \ldots} \epsilon_{i j k \ldots} A_{1 i} A_{2 j} A_{3 k} \ldots
$$

where the number of the suffixes is equal to the order of the matrix.

2×2 matrices

If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ then,

$$
|A|=a d-b c \quad A^{T}=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right) \quad A^{-1}=\frac{1}{|A|}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Product rules

$$
\begin{aligned}
& (A B \ldots N)^{T}=N^{T} \ldots B^{T} A^{T} \\
& (A B \ldots N)^{-1}=N^{-1} \ldots B^{-1} A^{-1} \\
& |A B \ldots N|=|A||B| \ldots|N|
\end{aligned}
$$

Orthogonal matrices

An orthogonal matrix Q is a square matrix whose columns q_{i} form a set of orthonormal vectors. For any orthogonal matrix Q,

$$
Q^{-1}=Q^{T}, \quad|Q|= \pm 1, \quad Q^{T} \text { is also orthogonal. }
$$

Solving sets of linear simultaneous equations

If A is square then $A x=b$ has a unique solution $x=A^{-1} b$ if A^{-1} exists, i.e., if $|A| \neq 0$.
If A is square then $A x=0$ has a non-trivial solution if and only if $|A|=0$.
An over-constrained set of equations $A x=b$ is one in which A has m rows and n columns, where m (the number of equations) is greater than n (the number of variables). The best solution x (in the sense that it minimizes the error $|A x-b|)$ is the solution of the n equations $A^{T} A x=A^{T} b$. If the columns of A are orthonormal vectors then $x=A^{T} b$.

Eigenvalues and eigenvectors

The n eigenvalues λ_{i} and eigenvectors u_{i} of an $n \times n$ matrix A are the solutions of the equation $A u=\lambda u$. The eigenvalues are the zeros of the polynomial of degree $n, P_{n}(\lambda)=|A-\lambda I|$. If A is Hermitian then the eigenvalues λ_{i} are real and the eigenvectors u_{i} are mutually orthogonal. $|A-\lambda I|=0$ is called the characteristic equation of the matrix A.

$$
\operatorname{Tr} A=\sum_{i} \lambda_{i}, \quad \text { also }|A|=\prod_{i} \lambda_{i} .
$$

If S is a symmetric matrix, Λ is the diagonal matrix whose diagonal elements are the eigenvalues of S, and U is the matrix whose columns are the normalized eigenvectors of A, then

$$
U^{T} S U=\Lambda \quad \text { and } \quad S=U \Lambda U^{T} .
$$

If x is an approximation to an eigenvector of A then $x^{T} A x /\left(x^{T} x\right)$ (Rayleigh's quotient) is an approximation to the corresponding eigenvalue.

Commutators

$$
\begin{array}{ll}
{[A, B]} & \equiv A B-B A \\
{[A, B]} & =-[B, A] \\
{[A, B]^{\dagger}} & =\left[B^{\dagger}, A^{\dagger}\right] \\
{[A+B, C]=[A, C]+[B, C]} \\
{[A B, C]} & =A[B, C]+[A, C] B \\
{[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0}
\end{array}
$$

Vector Calculus

Notation

ϕ is a scalar function of a set of position coordinates. In Cartesian coordinates $\phi=\phi(x, y, z)$; in cylindrical polar coordinates $\phi=\phi(\rho, \varphi, z)$; in spherical polar coordinates $\phi=\phi(r, \theta, \varphi)$; in cases with radial symmetry $\phi=\phi(r)$. A is a vector function whose components are scalar functions of the position coordinates: in Cartesian coordinates $A=i A_{x}+j A_{y}+k A_{z}$, where A_{x}, A_{y}, A_{z} are independent functions of x, y, z.
In Cartesian coordinates $\nabla\left(\right.$ 'del' $\left.^{\prime}\right) \equiv i \frac{\partial}{\partial x}+j \frac{\partial}{\partial y}+k \frac{\partial}{\partial z} \equiv\left[\begin{array}{c}\frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z}\end{array}\right]$
$\operatorname{grad} \phi=\nabla \phi, \quad \operatorname{div} A=\nabla \cdot A, \quad \operatorname{curl} A=\nabla \times A$

Identities

$$
\begin{aligned}
& \operatorname{grad}\left(\phi_{1}+\phi_{2}\right) \equiv \operatorname{grad} \phi_{1}+\operatorname{grad} \phi_{2} \quad \operatorname{div}\left(A_{1}+A_{2}\right) \equiv \operatorname{div} A_{1}+\operatorname{div} A_{2} \\
& \operatorname{grad}\left(\phi_{1} \phi_{2}\right) \equiv \phi_{1} \operatorname{grad} \phi_{2}+\phi_{2} \operatorname{grad} \phi_{1} \\
& \operatorname{curl}\left(A_{1}+A_{2}\right) \equiv \operatorname{curl} A_{1}+\operatorname{curl} A_{2} \\
& \operatorname{div}(\phi A) \equiv \phi \operatorname{div} A+(\operatorname{grad} \phi) \cdot A, \quad \operatorname{curl}(\phi A) \equiv \phi \operatorname{curl} A+(\operatorname{grad} \phi) \times A \\
& \operatorname{div}\left(A_{1} \times A_{2}\right) \equiv A_{2} \cdot \operatorname{curl} A_{1}-A_{1} \cdot \operatorname{curl} A_{2} \\
& \operatorname{curl}\left(A_{1} \times A_{2}\right) \equiv A_{1} \operatorname{div} A_{2}-A_{2} \operatorname{div} A_{1}+\left(A_{2} \cdot \operatorname{grad}\right) A_{1}-\left(A_{1} \cdot \operatorname{grad}\right) A_{2} \\
& \operatorname{div}(\operatorname{curl} A) \equiv 0, \quad \operatorname{curl}(\operatorname{grad} \phi) \equiv 0 \\
& \operatorname{curl}(\operatorname{curl} A) \equiv \operatorname{grad}(\operatorname{div} A)-\operatorname{div}(\operatorname{grad} A) \equiv \operatorname{grad}(\operatorname{div} A)-\nabla^{2} A \\
& \operatorname{grad}\left(A_{1} \cdot A_{2}\right) \equiv A_{1} \times\left(\operatorname{curl} A_{2}\right)+\left(A_{1} \cdot \operatorname{grad}\right) A_{2}+A_{2} \times\left(\operatorname{curl} A_{1}\right)+\left(A_{2} \cdot \operatorname{grad}\right) A_{1}
\end{aligned}
$$

Grad, Div, Curl and the Laplacian

	Cartesian Coordinates	Cylindrical Coordinates	Spherical Coordinates
Conversion to Cartesian Coordinates		$x=\rho \cos \varphi \quad y=\rho \sin \varphi \quad z=z$	$\begin{gathered} x=r \cos \varphi \sin \theta \quad y=r \sin \varphi \sin \theta \\ z=r \cos \theta \end{gathered}$
Vector A	$A_{x} i+A_{y} j+A_{z} k$	$A_{\rho} \hat{\rho}+A_{\varphi} \hat{\varphi}+A_{z} \hat{z}$	$A_{r} \hat{r}+A_{\theta} \widehat{\theta}+A_{\varphi} \hat{\varphi}$
Gradient $\nabla \boldsymbol{\phi}$	$\frac{\partial \phi}{\partial x} i+\frac{\partial \phi}{\partial y} j+\frac{\partial \phi}{\partial z} k$	$\frac{\partial \phi}{\partial \rho} \widehat{\rho}+\frac{1}{\rho} \frac{\partial \phi}{\partial \varphi} \widehat{\varphi}+\frac{\partial \phi}{\partial z} \widehat{z}$	$\frac{\partial \phi}{\partial r} \widehat{r}+\frac{1}{r} \frac{\partial \phi}{\partial \theta} \widehat{\theta}+\frac{1}{r \sin \theta} \frac{\partial \phi}{\partial \varphi} \widehat{\varphi}$
$\begin{gathered} \text { Divergence } \\ \nabla \cdot A \end{gathered}$	$\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}$	$\frac{1}{\rho} \frac{\partial\left(\rho A_{\rho}\right)}{\partial \rho}+\frac{1}{\rho} \frac{\partial A_{\varphi}}{\partial \varphi}+\frac{\partial A_{z}}{\partial z}$	$\begin{array}{r} \frac{1}{r^{2}} \frac{\partial\left(r^{2} A_{r}\right)}{\partial r}+\frac{1}{r \sin \theta} \frac{\partial A_{\theta} \sin \theta}{\partial \theta} \\ +\frac{1}{r \sin \theta} \frac{\partial A_{\varphi}}{\partial \varphi} \end{array}$
Curl $\nabla \times A$	$\left\|\begin{array}{ccc}i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_{x} & A_{y} & A_{z}\end{array}\right\|$	$\left\|\begin{array}{lll}\frac{1}{\rho} \hat{\rho} & \hat{\varphi} & \frac{1}{\rho} \hat{z} \\ \frac{\partial}{\partial \rho} & \frac{\partial}{\partial \varphi} & \frac{\partial}{\partial z} \\ A_{\rho} & \rho A_{\varphi} & A_{z}\end{array}\right\|$	$\left\|\begin{array}{ccc}\frac{1}{r^{2} \sin \theta} \hat{r} & \frac{1}{r \sin \theta} \hat{\theta} & \frac{1}{r} \widehat{\varphi} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \varphi} \\ A_{r} & r A_{\theta} & r A_{\varphi} \sin \theta\end{array}\right\|$
$\begin{gathered} \text { Laplacian } \\ \nabla^{2} \phi \end{gathered}$	$\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}$	$\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial \phi}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} \phi}{\partial \varphi^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}$	$\begin{array}{r} \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \phi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \phi}{\partial \theta}\right) \\ +\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \phi}{\partial \varphi^{2}} \end{array}$

Complex Variables

Complex numbers

The complex number $z=x+\mathrm{i} y=r(\cos \theta+\mathrm{i} \sin \theta)=r \mathrm{e}^{\mathrm{i}(\theta+2 n \pi)}$, where $\mathrm{i}^{2}=-1$ and n is an arbitrary integer. The real quantity r is the modulus of z and the angle θ is the argument of z. The complex conjugate of z is $z^{*}=x-\mathrm{i} y=$ $r(\cos \theta-\mathrm{i} \sin \theta)=r \mathrm{e}^{-\mathrm{i} \theta} ; \quad z z^{*}=|z|^{2}=x^{2}+y^{2}$

De Moivre's theorem

$$
(\cos \theta+\mathrm{i} \sin \theta)^{n}=\mathrm{e}^{\mathrm{i} n \theta}=\cos n \theta+\mathrm{i} \sin n \theta
$$

Power series for complex variables.

$$
\begin{array}{lll}
\mathrm{e}^{z} & =1+z+\frac{z^{2}}{2!}+\cdots+\frac{z^{n}}{n!}+\cdots & \text { convergent for all finite } z \\
\sin z & =z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\cdots & \\
\cos z & =1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\cdots & \text { convergent for all finite } z \\
\ln (1+z) & =z-\frac{z^{2}}{2}+\frac{z^{3}}{3}-\cdots & \text { convergent for all finite } z \\
\text { crincipal value of } \ln (1+z)
\end{array}
$$

This last series converges both on and within the circle $|z|=1$ except at the point $z=-1$.

$$
\tan ^{-1} z=z-\frac{z^{3}}{3}+\frac{z^{5}}{5}-\cdots
$$

This last series converges both on and within the circle $|z|=1$ except at the points $z= \pm \mathrm{i}$.

$$
(1+z)^{n}=1+n z+\frac{n(n-1)}{2!} z^{2}+\frac{n(n-1)(n-2)}{3!} z^{3}+\cdots
$$

This last series converges both on and within the circle $|z|=1$ except at the point $z=-1$.

Trigonometric Formulae

$$
\begin{aligned}
& \cos ^{2} A+\sin ^{2} A=1 \quad \sec ^{2} A-\tan ^{2} A=1 \quad \operatorname{cosec}^{2} A-\cot ^{2} A=1 \\
& \sin 2 A=2 \sin A \cos A \\
& \cos 2 A=\cos ^{2} A-\sin ^{2} A \\
& \tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A} \text {. } \\
& \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
& \cos A \cos B=\frac{\cos (A+B)+\cos (A-B)}{2} \\
& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \quad \sin A \sin B=\frac{\cos (A-B)-\cos (A+B)}{2} \\
& \tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \quad \sin A \cos B=\frac{\sin (A+B)+\sin (A-B)}{2} \\
& \sin A+\sin B=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2} \quad \cos ^{2} A=\frac{1+\cos 2 A}{2} \\
& \sin A-\sin B=2 \cos \frac{A+B}{2} \sin \frac{A-B}{2} \quad \sin ^{2} A=\frac{1-\cos 2 A}{2} \\
& \cos A+\cos B=2 \cos \frac{A+B}{2} \cos \frac{A-B}{2} \quad \cos ^{3} A=\frac{3 \cos A+\cos 3 A}{4} \\
& \cos A-\cos B=-2 \sin \frac{A+B}{2} \sin \frac{A-B}{2} \quad \sin ^{3} A=\frac{3 \sin A-\sin 3 A}{4}
\end{aligned}
$$

Relations between sides and angles of any plane triangle

In a plane triangle with angles A, B, and C and sides opposite a, b, and c respectively,
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=$ diameter of circumscribed circle.
$a^{2}=b^{2}+c^{2}-2 b c \cos A$
$a=b \cos C+c \cos B$
$\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$\tan \frac{A-B}{2}=\frac{a-b}{a+b} \cot \frac{C}{2}$
area $=\frac{1}{2} a b \sin C=\frac{1}{2} b c \sin A=\frac{1}{2} c a \sin B=\sqrt{s(s-a)(s-b)(s-c)}, \quad$ where $s=\frac{1}{2}(a+b+c)$

Hyperbolic Functions

$\cosh x=\frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots$
valid for all x
$\sinh x=\frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots$
valid for all x
$\cosh \mathrm{i} x=\cos x$
$\sinh \mathrm{i} x=\mathrm{i} \sin x$
$\tanh x=\frac{\sinh x}{\cosh x}$
$\operatorname{coth} x=\frac{\cosh x}{\sinh x}$
$\cosh ^{2} x-\sinh ^{2} x=1$

$$
\begin{aligned}
& \operatorname{cosi} x=\cosh x \\
& \sin \mathrm{i} x=\mathrm{i} \sinh x \\
& \operatorname{sech} x=\frac{1}{\cosh x} \\
& \operatorname{cosech} x=\frac{1}{\sinh x}
\end{aligned}
$$

For large positive x :

$$
\begin{aligned}
& \cosh x \approx \sinh x \rightarrow \frac{\mathrm{e}^{x}}{2} \\
& \tanh x \rightarrow 1
\end{aligned}
$$

For large negative x :

$$
\begin{aligned}
& \cosh x \approx-\sinh x \rightarrow \frac{\mathrm{e}^{-x}}{2} \\
& \tanh x \rightarrow-1
\end{aligned}
$$

Relations of the functions

$$
\begin{aligned}
& \sinh x=-\sinh (-x) \\
& \operatorname{sech} x=\operatorname{sech}(-x) \\
& \cosh x=\cosh (-x) \\
& \tanh x=-\tanh (-x) \\
& \sinh x=\frac{2 \tanh (x / 2)}{1-\tanh ^{2}(x / 2)}=\frac{\tanh x}{\sqrt{1-\tanh ^{2} x}} \\
& \cosh x=\frac{1+\tanh ^{2}(x / 2)}{1-\tanh ^{2}(x / 2)}=\frac{1}{\sqrt{1-\tanh ^{2} x}} \\
& \tanh x=\sqrt{1-\operatorname{sech}^{2} x} \\
& \operatorname{coth} x=\sqrt{\operatorname{cosech}^{2} x+1} \\
& \sinh (x / 2)=\sqrt{\frac{\cosh x-1}{2}} \\
& \operatorname{sech} x=\sqrt{1-\tanh ^{2} x} \\
& \operatorname{cosech} x=\sqrt{\operatorname{coth}^{2} x-1} \\
& \cosh (x / 2)=\sqrt{\frac{\cosh x+1}{2}} \\
& \tanh (x / 2)=\frac{\cosh x-1}{\sinh x}=\frac{\sinh x}{\cosh x+1} \\
& \sinh (2 x)=2 \sinh x \cosh x \\
& \tanh (2 x)=\frac{2 \tanh x}{1+\tanh ^{2} x} \\
& \cosh (2 x)=\cosh ^{2} x+\sinh ^{2} x=2 \cosh ^{2} x-1=1+2 \sinh ^{2} x \\
& \sinh (3 x)=3 \sinh x+4 \sinh ^{3} x \\
& \cosh 3 x=4 \cosh ^{3} x-3 \cosh x \\
& \tanh (3 x)=\frac{3 \tanh x+\tanh ^{3} x}{1+3 \tanh ^{2} x}
\end{aligned}
$$

$\sinh (x \pm y)=\sinh x \cosh y \pm \cosh x \sinh y$
$\cosh (x \pm y)=\cosh x \cosh y \pm \sinh x \sinh y$
$\tanh (x \pm y)=\frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}$
$\sinh x+\sinh y=2 \sinh \frac{1}{2}(x+y) \cosh \frac{1}{2}(x-y) \quad \cosh x+\cosh y=2 \cosh \frac{1}{2}(x+y) \cosh \frac{1}{2}(x-y)$
$\sinh x-\sinh y=2 \cosh \frac{1}{2}(x+y) \sinh \frac{1}{2}(x-y) \quad \cosh x-\cosh y=2 \sinh \frac{1}{2}(x+y) \sinh \frac{1}{2}(x-y)$
$\sinh x \pm \cosh x=\frac{1 \pm \tanh (x / 2)}{1 \mp \tanh (x / 2)}=\mathrm{e}^{ \pm x}$
$\tanh x \pm \tanh y=\frac{\sinh (x \pm y)}{\cosh x \cosh y}$
$\operatorname{coth} x \pm \operatorname{coth} y= \pm \frac{\sinh (x \pm y)}{\sinh x \sinh y}$
Inverse functions

$$
\begin{array}{lr}
\sinh ^{-1} \frac{x}{a}=\ln \left(\frac{x+\sqrt{x^{2}+a^{2}}}{a}\right) & \text { for }-\infty<x<\infty \\
\cosh ^{-1} \frac{x}{a}=\ln \left(\frac{x+\sqrt{x^{2}-a^{2}}}{a}\right) & \text { for } x \geq a \\
\tanh ^{-1} \frac{x}{a}=\frac{1}{2} \ln \left(\frac{a+x}{a-x}\right) & \text { for } x^{2}<a^{2} \\
\operatorname{coth}^{-1} \frac{x}{a}=\frac{1}{2} \ln \left(\frac{x+a}{x-a}\right) & \text { for } x^{2}>a^{2} \\
\operatorname{sech}^{-1} \frac{x}{a}=\ln \left(\frac{a}{x}+\sqrt{\frac{a^{2}}{x^{2}}-1}\right) & \text { for } 0<x \leq a \\
\operatorname{cosech}^{-1} \frac{x}{a}=\ln \left(\frac{a}{x}+\sqrt{\frac{a^{2}}{x^{2}}+1}\right) & \text { for } x \neq 0
\end{array}
$$

Limits

$$
\begin{aligned}
& n^{c} x^{n} \rightarrow 0 \text { as } n \rightarrow \infty \text { if }|x|<1(\text { any fixed } c) \\
& \left.x^{n} / n!\rightarrow 0 \text { as } n \rightarrow \infty \text { (any fixed } x\right) \\
& (1+x / n)^{n} \rightarrow \mathrm{e}^{x} \text { as } n \rightarrow \infty, x \ln x \rightarrow 0 \text { as } x \rightarrow 0 \\
& \text { If } f(a)=g(a)=0 \text { then } \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f^{\prime}(a)}{g^{\prime}(a)} \text { (l'Hôpital's rule) }
\end{aligned}
$$

Differentiation

$$
\begin{aligned}
& (u v)^{\prime}=u^{\prime} v+u v^{\prime}, \quad\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}} \\
& (u v)^{(n)}=u^{(n)} v+n u^{(n-1)} v^{(1)}+\cdots+{ }^{n} C_{r} u^{(n-r)} v^{(r)}+\cdots+u v^{(n)}
\end{aligned}
$$

where ${ }^{n} C_{r} \equiv\binom{n}{r}=\frac{n!}{r!(n-r)!}$

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\sin x) & =\cos x & \frac{\mathrm{~d}}{\mathrm{~d} x}(\sinh x) & =\cosh x \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\cos x) & =-\sin x & \frac{\mathrm{~d}}{\mathrm{~d} x}(\cosh x) & =\sinh x \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\tan x) & =\sec ^{2} x & \frac{\mathrm{~d}}{\mathrm{~d} x}(\tanh x) & =\operatorname{sech}^{2} x \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\sec x) & =\sec x \tan x & \frac{\mathrm{~d}}{\mathrm{~d} x}(\operatorname{sech} x) & =-\operatorname{sech} x \tanh x \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\cot x) & =-\operatorname{cosec}^{2} x & \frac{\mathrm{~d}}{\mathrm{~d} x}(\operatorname{coth} x) & =-\operatorname{cosech}^{2} x \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\operatorname{cosec} x) & =-\operatorname{cosec} x \cot x & \frac{\mathrm{~d}}{\mathrm{~d} x}(\operatorname{cosech} x) & =-\operatorname{cosech} x \operatorname{coth} x
\end{aligned}
$$

Integration

Standard forms

$$
\begin{aligned}
& \int x^{n} \mathrm{~d} x=\frac{x^{n+1}}{n+1}+c \\
& \text { for } n \neq-1 \\
& \int \frac{1}{x} \mathrm{~d} x=\ln x+c \\
& \int \ln x \mathrm{~d} x=x(\ln x-1)+c \\
& \int \mathrm{e}^{a x} \mathrm{~d} x=\frac{1}{a} \mathrm{e}^{a x}+c \quad \int x \mathrm{e}^{a x} \mathrm{~d} x=\mathrm{e}^{a x}\left(\frac{x}{a}-\frac{1}{a^{2}}\right)+c \\
& \int x \ln x \mathrm{~d} x=\frac{x^{2}}{2}\left(\ln x-\frac{1}{2}\right)+c \\
& \int \frac{1}{a^{2}+x^{2}} \mathrm{~d} x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c \\
& \int \frac{1}{a^{2}-x^{2}} \mathrm{~d} x=\frac{1}{a} \tanh ^{-1}\left(\frac{x}{a}\right)+c=\frac{1}{2 a} \ln \left(\frac{a+x}{a-x}\right)+c \\
& \text { for } x^{2}<a^{2} \\
& \int \frac{1}{x^{2}-a^{2}} \mathrm{~d} x=-\frac{1}{a} \operatorname{coth}^{-1}\left(\frac{x}{a}\right)+c=\frac{1}{2 a} \ln \left(\frac{x-a}{x+a}\right)+c \\
& \text { for } x^{2}>a^{2} \\
& \int \frac{x}{\left(x^{2} \pm a^{2}\right)^{n}} \mathrm{~d} x=\frac{-1}{2(n-1)} \frac{1}{\left(x^{2} \pm a^{2}\right)^{n-1}}+c \\
& \int \frac{x}{x^{2} \pm a^{2}} \mathrm{~d} x=\frac{1}{2} \ln \left(x^{2} \pm a^{2}\right)+c \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} \mathrm{~d} x=\sin ^{-1}\left(\frac{x}{a}\right)+c \\
& \int \frac{1}{\sqrt{x^{2} \pm a^{2}}} \mathrm{~d} x=\ln \left(x+\sqrt{x^{2} \pm a^{2}}\right)+c \\
& \int \frac{x}{\sqrt{x^{2} \pm a^{2}}} \mathrm{~d} x=\sqrt{x^{2} \pm a^{2}}+c \\
& \int \sqrt{a^{2}-x^{2}} \mathrm{~d} x=\frac{1}{2}\left[x \sqrt{a^{2}-x^{2}}+a^{2} \sin ^{-1}\left(\frac{x}{a}\right)\right]+c
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{1}{(1+x) x^{p}} \mathrm{~d} x=\pi \operatorname{cosec} p \pi \\
& \int_{0}^{\infty} \cos \left(x^{2}\right) d x=\int_{0}^{\infty} \sin \left(x^{2}\right) \mathrm{d} x=\frac{1}{2} \sqrt{\frac{\pi}{2}} \\
& \int_{-\infty}^{\infty} \exp \left(-x^{2} / 2 \sigma^{2}\right) \mathrm{d} x=\sigma \sqrt{2 \pi} \\
& \int_{-\infty}^{\infty} x^{n} \exp \left(-x^{2} / 2 \sigma^{2}\right) \mathrm{d} x= \begin{cases}1 \times 3 \times 5 \times \cdots(n-1) \sigma^{n+1} \sqrt{2 \pi} & \text { for } n \geq 2 \text { and even } \\
0 & \text { for } n \geq 1 \text { and odd }\end{cases} \\
& \int \sin x \mathrm{~d} x=-\cos x+c \quad \int \sinh x \mathrm{~d} x=\cosh x+c \\
& \int \cos x \mathrm{~d} x=\sin x+c \quad \int \cosh x \mathrm{~d} x=\sinh x+c \\
& \int \tan x \mathrm{~d} x=-\ln (\cos x)+c \quad \int \tanh x \mathrm{~d} x=\ln (\cosh x)+c \\
& \int \operatorname{cosec} x \mathrm{~d} x=\ln (\operatorname{cosec} x-\cot x)+c \quad \int \operatorname{cosech} x \mathrm{~d} x=\ln [\tanh (x / 2)]+c \\
& \int \sec x \mathrm{~d} x=\ln (\sec x+\tan x)+c \quad \int \operatorname{sech} x \mathrm{~d} x=2 \tan ^{-1}\left(\mathrm{e}^{x}\right)+c \\
& \int \cot x \mathrm{~d} x=\ln (\sin x)+c \quad \int \operatorname{coth} x \mathrm{~d} x=\ln (\sinh x)+c \\
& \int \sin m x \sin n x \mathrm{~d} x=\frac{\sin (m-n) x}{2(m-n)}-\frac{\sin (m+n) x}{2(m+n)}+c \\
& \text { if } m^{2} \neq n^{2} \\
& \int \cos m x \cos n x \mathrm{~d} x=\frac{\sin (m-n) x}{2(m-n)}+\frac{\sin (m+n) x}{2(m+n)}+c \\
& \text { if } m^{2} \neq n^{2}
\end{aligned}
$$

Standard substitutions

If the integrand is a function of:
substitute:

$$
\begin{array}{ll}
\left(a^{2}-x^{2}\right) \text { or } \sqrt{a^{2}-x^{2}} & x=a \sin \theta \text { or } x=a \cos \theta \\
\left(x^{2}+a^{2}\right) \text { or } \sqrt{x^{2}+a^{2}} & x=a \tan \theta \text { or } x=a \sinh \theta \\
\left(x^{2}-a^{2}\right) \text { or } \sqrt{x^{2}-a^{2}} & x=a \sec \theta \text { or } x=a \cosh \theta
\end{array}
$$

If the integrand is a rational function of $\sin x$ or $\cos x$ or both, substitute $t=\tan (x / 2)$ and use the results:

$$
\sin x=\frac{2 t}{1+t^{2}} \quad \cos x=\frac{1-t^{2}}{1+t^{2}} \quad \mathrm{~d} x=\frac{2 \mathrm{~d} t}{1+t^{2}}
$$

If the integrand is of the form: substitute:
$\int \frac{\mathrm{d} x}{(a x+b) \sqrt{p x+q}} \quad p x+q=u^{2}$
$\int \frac{\mathrm{d} x}{(a x+b) \sqrt{p x^{2}+q x+r}} \quad a x+b=\frac{1}{u}$.

Integration by parts

$$
\int_{a}^{b} u \mathrm{~d} v=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v \mathrm{~d} u
$$

Differentiation of an integral

If $f(x, \alpha)$ is a function of x containing a parameter α and the limits of integration a and b are functions of α then

$$
\frac{\mathrm{d}}{\mathrm{~d} \alpha} \int_{a(\alpha)}^{b(\alpha)} f(x, \alpha) \mathrm{d} x=f(b, \alpha) \frac{\mathrm{d} b}{\mathrm{~d} \alpha}-f(a, \alpha) \frac{\mathrm{d} a}{\mathrm{~d} \alpha}+\int_{a(\alpha)}^{b(\alpha)} \frac{\partial}{\partial \alpha} f(x, \alpha) \mathrm{d} x .
$$

Special case,

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \int_{a}^{x} f(y) \mathrm{d} y=f(x)
$$

Dirac δ-'function'

$\delta(t-\tau)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \exp [\mathrm{i} \omega(t-\tau)] \mathrm{d} \omega$.
If $f(t)$ is an arbitrary function of t then $\int_{-\infty}^{\infty} \delta(t-\tau) f(t) \mathrm{d} t=f(\tau)$.
$\delta(t)=0$ if $t \neq 0$, also $\int_{-\infty}^{\infty} \delta(t) \mathrm{d} t=1$

Reduction formulae

Factorials
$n!=n(n-1)(n-2) \ldots 1, \quad 0!=1$.
Stirling's formula for large $n: \quad \ln (n!) \approx n \ln n-n$.
For any $p>-1, \int_{0}^{\infty} x^{p} \mathrm{e}^{-x} \mathrm{~d} x=p \int_{0}^{\infty} x^{p-1} \mathrm{e}^{-x} \mathrm{~d} x=p!. \quad(-1 / 2)!=\sqrt{\pi}, \quad(1 / 2)!=\sqrt{\pi} / 2$, etc.
For any $p, q>-1, \int_{0}^{1} x^{p}(1-x)^{q} \mathrm{~d} x=\frac{p!q!}{(p+q+1)!}$.

Trigonometrical

If m, n are integers,

$$
\int_{0}^{\pi / 2} \sin ^{m} \theta \cos ^{n} \theta \mathrm{~d} \theta=\frac{m-1}{m+n} \int_{0}^{\pi / 2} \sin ^{m-2} \theta \cos ^{n} \theta \mathrm{~d} \theta=\frac{n-1}{m+n} \int_{0}^{\pi / 2} \sin ^{m} \theta \cos ^{n-2} \theta \mathrm{~d} \theta
$$

and can therefore be reduced eventually to one of the following integrals

$$
\int_{0}^{\pi / 2} \sin \theta \cos \theta \mathrm{~d} \theta=\frac{1}{2}, \quad \int_{0}^{\pi / 2} \sin \theta \mathrm{~d} \theta=1, \quad \int_{0}^{\pi / 2} \cos \theta \mathrm{~d} \theta=1, \quad \int_{0}^{\pi / 2} \mathrm{~d} \theta=\frac{\pi}{2} .
$$

Other

If $I_{n}=\int_{0}^{\infty} x^{n} \exp \left(-\alpha x^{2}\right) \mathrm{d} x \quad$ then $\quad I_{n}=\frac{(n-1)}{2 \alpha} I_{n-2}, \quad I_{0}=\frac{1}{2} \sqrt{\frac{\pi}{\alpha}}, \quad I_{1}=\frac{1}{2 \alpha}$.

Differential Equations

Diffusion (conduction) equation

$$
\frac{\partial \psi}{\partial t}=\kappa \nabla^{2} \psi
$$

Wave equation

$$
\nabla^{2} \psi=\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}
$$

Bessel's equation

$$
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(x^{2}-m^{2}\right) y=0,
$$

solutions of which are Bessel functions $J_{m}(x)$ of order m.
Series form of Bessel functions of the first kind

$$
\left.J_{m}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}(x / 2)^{m+2 k}}{k!(m+k)!} \quad \text { (integer } m\right) .
$$

The same general form holds for non-integer $m>0$.

Laplace's equation

$$
\nabla^{2} u=0
$$

If expressed in two-dimensional polar coordinates (see section 4), a solution is

$$
u(\rho, \varphi)=\left[A \rho^{n}+B \rho^{-n}\right][C \exp (\mathrm{i} n \varphi)+D \exp (-\mathrm{i} n \varphi)]
$$

where A, B, C, D are constants and n is a real integer.
If expressed in three-dimensional polar coordinates (see section 4) a solution is

$$
u(r, \theta, \varphi)=\left[A r^{l}+B r^{-(l+1)}\right] P_{l}^{m}[C \sin m \varphi+D \cos m \varphi]
$$

where l and m are integers with $l \geq|m| \geq 0 ; A, B, C, D$ are constants;

$$
P_{l}^{m}(\cos \theta)=\sin ^{|m|} \theta\left[\frac{\mathrm{d}}{\mathrm{~d}(\cos \theta)}\right]^{|m|} P_{l}(\cos \theta)
$$

is the associated Legendre polynomial.

$$
P_{l}^{0}(1)=1
$$

If expressed in cylindrical polar coordinates (see section 4), a solution is

$$
u(\rho, \varphi, z)=J_{m}(n \rho)[A \cos m \varphi+B \sin m \varphi][C \exp (n z)+D \exp (-n z)]
$$

where m and n are integers; A, B, C, D are constants.

Functions of Several Variables

If $\phi=f(x, y, z, \ldots)$ then $\frac{\partial \phi}{\partial x}$ implies differentiation with respect to x keeping y, z, \ldots constant.

$$
\mathrm{d} \phi=\frac{\partial \phi}{\partial x} \mathrm{~d} x+\frac{\partial \phi}{\partial y} \mathrm{~d} y+\frac{\partial \phi}{\partial z} \mathrm{~d} z+\cdots \quad \text { and } \quad \delta \phi \approx \frac{\partial \phi}{\partial x} \delta x+\frac{\partial \phi}{\partial y} \delta y+\frac{\partial \phi}{\partial z} \delta z+\cdots
$$

where x, y, z, \ldots are independent variables. $\frac{\partial \phi}{\partial x}$ is also written as $\left(\frac{\partial \phi}{\partial x}\right)_{y_{\ldots} \ldots}$ or $\left.\frac{\partial \phi}{\partial x}\right|_{y, \ldots .}$ when the variables kept constant need to be stated explicitly.
If ϕ is a well-behaved function then $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ etc.
If $\phi=f(x, y)$,

$$
\left(\frac{\partial \phi}{\partial x}\right)_{y}=\frac{1}{\left(\frac{\partial x}{\partial \phi}\right)_{y}}, \quad\left(\frac{\partial \phi}{\partial x}\right)_{y}\left(\frac{\partial x}{\partial y}\right)_{\phi}\left(\frac{\partial y}{\partial \phi}\right)_{x}=-1 .
$$

Taylor series for two variables

If $\phi(x, y)$ is well-behaved in the vicinity of $x=a, y=b$ then it has a Taylor series

$$
\phi(x, y)=\phi(a+u, b+v)=\phi(a, b)+u \frac{\partial \phi}{\partial x}+v \frac{\partial \phi}{\partial y}+\frac{1}{2!}\left(u^{2} \frac{\partial^{2} \phi}{\partial x^{2}}+2 u v \frac{\partial^{2} \phi}{\partial x \partial y}+v^{2} \frac{\partial^{2} \phi}{\partial y^{2}}\right)+\cdots
$$

where $x=a+u, y=b+v$ and the differential coefficients are evaluated at $x=a, \quad y=b$

Stationary points

A function $\phi=f(x, y)$ has a stationary point when $\frac{\partial \phi}{\partial x}=\frac{\partial \phi}{\partial y}=0$. Unless $\frac{\partial^{2} \phi}{\partial x^{2}}=\frac{\partial^{2} \phi}{\partial y^{2}}=\frac{\partial^{2} \phi}{\partial x \partial y}=0$, the following conditions determine whether it is a minimum, a maximum or a saddle point.

$$
\left.\begin{array}{ll}
\text { Minimum: } & \frac{\partial^{2} \phi}{\partial x^{2}}>0 \text {, or } \quad \frac{\partial^{2} \phi}{\partial y^{2}}>0, \\
\text { Maximum: } & \frac{\partial^{2} \phi}{\partial x^{2}}<0 \text {, or } \frac{\partial^{2} \phi}{\partial y^{2}}<0,
\end{array}\right\} \text { and } \frac{\partial^{2} \phi}{\partial x^{2}} \frac{\partial^{2} \phi}{\partial y^{2}}>\left(\frac{\partial^{2} \phi}{\partial x \partial y}\right)^{2}
$$

If $\frac{\partial^{2} \phi}{\partial x^{2}}=\frac{\partial^{2} \phi}{\partial y^{2}}=\frac{\partial^{2} \phi}{\partial x \partial y}=0$ the character of the turning point is determined by the next higher derivative.

Changing variables: the chain rule

If $\phi=f(x, y, \ldots)$ and the variables x, y, \ldots are functions of independent variables u, v, \ldots then

$$
\begin{aligned}
& \frac{\partial \phi}{\partial u}=\frac{\partial \phi}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial \phi}{\partial y} \frac{\partial y}{\partial u}+\cdots \\
& \frac{\partial \phi}{\partial v}=\frac{\partial \phi}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial \phi}{\partial y} \frac{\partial y}{\partial v}+\cdots \\
& \text { etc. }
\end{aligned}
$$

Changing variables in surface and volume integrals - Jacobians

If an area A in the x, y plane maps into an area A^{\prime} in the u, v plane then

$$
\int_{A} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{A^{\prime}} f(u, v) J \mathrm{~d} u \mathrm{~d} v \text { where } J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|
$$

The Jacobian J is also written as $\frac{\partial(x, y)}{\partial(u, v)}$. The corresponding formula for volume integrals is

$$
\int_{V} f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\int_{V^{\prime}} f(u, v, w) J \mathrm{~d} u \mathrm{~d} v \mathrm{~d} w \quad \text { where now } \quad J=\left|\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right|
$$

Fourier Series and Transforms

Fourier series

If $y(x)$ is a function defined in the range $-\pi \leq x \leq \pi$ then

$$
y(x) \approx c_{0}+\sum_{m=1}^{M} c_{m} \cos m x+\sum_{m=1}^{M^{\prime}} s_{m} \sin m x
$$

where the coefficients are

$$
\begin{aligned}
& c_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} y(x) \mathrm{d} x \\
& c_{m}=\frac{1}{\pi} \int_{-\pi}^{\pi} y(x) \cos m x \mathrm{~d} x \\
& s_{m}=\frac{1}{\pi} \int_{-\pi}^{\pi} y(x) \sin m x \mathrm{~d} x
\end{aligned}
$$

$$
\begin{aligned}
& (m=1, \ldots, M) \\
& \left(m=1, \ldots, M^{\prime}\right)
\end{aligned}
$$

with convergence to $y(x)$ as $M, M^{\prime} \rightarrow \infty$ for all points where $y(x)$ is continuous.

Fourier series for other ranges

Variable t, range $0 \leq t \leq T$, (i.e., a periodic function of time with period T, frequency $\omega=2 \pi / T$).

$$
y(t) \approx c_{0}+\sum c_{m} \cos m \omega t+\sum s_{m} \sin m \omega t
$$

where

$$
c_{0}=\frac{\omega}{2 \pi} \int_{0}^{T} y(t) \mathrm{d} t, \quad c_{m}=\frac{\omega}{\pi} \int_{0}^{T} y(t) \cos m \omega t \mathrm{~d} t, \quad s_{m}=\frac{\omega}{\pi} \int_{0}^{T} y(t) \sin m \omega t \mathrm{~d} t .
$$

Variable x, range $0 \leq x \leq L$,

$$
y(x) \approx c_{0}+\sum c_{m} \cos \frac{2 m \pi x}{L}+\sum s_{m} \sin \frac{2 m \pi x}{L}
$$

where

$$
c_{0}=\frac{1}{L} \int_{0}^{L} y(x) \mathrm{d} x, \quad c_{m}=\frac{2}{L} \int_{0}^{L} y(x) \cos \frac{2 m \pi x}{L} \mathrm{~d} x, \quad s_{m}=\frac{2}{L} \int_{0}^{L} y(x) \sin \frac{2 m \pi x}{L} \mathrm{~d} x .
$$

Fourier series for odd and even functions

If $y(x)$ is an odd (anti-symmetric) function [i.e., $y(-x)=-y(x)$] defined in the range $-\pi \leq x \leq \pi$, then only sines are required in the Fourier series and $s_{m}=\frac{2}{\pi} \int_{0}^{\pi} y(x) \sin m x \mathrm{~d} x$. If, in addition, $y(x)$ is symmetric about $x=\pi / 2$, then the coefficients s_{m} are given by $s_{m}=0$ (for m even), $s_{m}=\frac{4}{\pi} \int_{0}^{\pi / 2} y(x) \sin m x \mathrm{~d} x$ (for m odd). If $y(x)$ is an even (symmetric) function [i.e., $y(-x)=y(x)$] defined in the range $-\pi \leq x \leq \pi$, then only constant and cosine terms are required in the Fourier series and $c_{0}=\frac{1}{\pi} \int_{0}^{\pi} y(x) \mathrm{d} x, c_{m}=\frac{2}{\pi} \int_{0}^{\pi} y(x) \cos m x \mathrm{~d} x$. If, in addition, $y(x)$ is anti-symmetric about $x=\frac{\pi}{2}$, then $c_{0}=0$ and the coefficients c_{m} are given by $c_{m}=0$ (for m even), $c_{m}=\frac{4}{\pi} \int_{0}^{\pi / 2} y(x) \cos m x \mathrm{~d} x$ (for m odd).
[These results also apply to Fourier series with more general ranges provided appropriate changes are made to the limits of integration.]

Complex form of Fourier series

If $y(x)$ is a function defined in the range $-\pi \leq x \leq \pi$ then

$$
y(x) \approx \sum_{-M}^{M} C_{m} \mathrm{e}^{\mathrm{i} m x}, \quad C_{m}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} y(x) \mathrm{e}^{-\mathrm{i} m x} \mathrm{~d} x
$$

with m taking all integer values in the range $\pm M$. This approximation converges to $y(x)$ as $M \rightarrow \infty$ under the same conditions as the real form.
For other ranges the formulae are:
Variable t, range $0 \leq t \leq T$, frequency $\omega=2 \pi / T$,

$$
y(t)=\sum_{-\infty}^{\infty} C_{m} \mathrm{e}^{\mathrm{i} m \omega t}, \quad C_{m}=\frac{\omega}{2 \pi} \int_{0}^{T} y(t) \mathrm{e}^{-\mathrm{i} m \omega t} \mathrm{~d} t
$$

Variable x^{\prime}, range $0 \leq x^{\prime} \leq L$,

$$
y\left(x^{\prime}\right)=\sum_{-\infty}^{\infty} C_{m} \mathrm{e}^{\mathrm{i} 2 m \pi x^{\prime} / L}, \quad C_{m}=\frac{1}{L} \int_{0}^{L} y\left(x^{\prime}\right) \mathrm{e}^{-\mathrm{i} 2 m \pi x^{\prime} / L} \mathrm{~d} x^{\prime}
$$

Discrete Fourier series

If $y(x)$ is a function defined in the range $-\pi \leq x \leq \pi$ which is sampled in the $2 N$ equally spaced points $x_{n}=$ $n x / N \quad[n=-(N-1) \ldots N]$, then

$$
\begin{aligned}
y\left(x_{n}\right)=c_{0} & +c_{1} \cos x_{n}+c_{2} \cos 2 x_{n}+\cdots+c_{N-1} \cos (N-1) x_{n}+c_{N} \cos N x_{n} \\
& +s_{1} \sin x_{n}+s_{2} \sin 2 x_{n}+\cdots+s_{N-1} \sin (N-1) x_{n}+s_{N} \sin N x_{n}
\end{aligned}
$$

where the coefficients are

$$
\begin{aligned}
c_{0} & =\frac{1}{2 N} \sum y\left(x_{n}\right) \\
c_{m} & =\frac{1}{N} \sum y\left(x_{n}\right) \cos m x_{n} \\
c_{N} & =\frac{1}{2 N} \sum y\left(x_{n}\right) \cos N x_{n} \\
s_{m} & =\frac{1}{N} \sum y\left(x_{n}\right) \sin m x_{n} \\
s_{N} & =\frac{1}{2 N} \sum y\left(x_{n}\right) \sin N x_{n}
\end{aligned}
$$

each summation being over the $2 N$ sampling points x_{n}.

Fourier transforms

If $y(x)$ is a function defined in the range $-\infty \leq x \leq \infty$ then the Fourier transform $\hat{y}(\omega)$ is defined by the equations

$$
y(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{y}(\omega) \mathrm{e}^{\mathrm{i} \omega t} \mathrm{~d} \omega, \quad \hat{y}(\omega)=\int_{-\infty}^{\infty} y(t) \mathrm{e}^{-\mathrm{i} \omega t} \mathrm{~d} t .
$$

If ω is replaced by $2 \pi f$, where f is the frequency, this relationship becomes

$$
y(t)=\int_{-\infty}^{\infty} \hat{y}(f) \mathrm{e}^{\mathrm{i} 2 \pi f t} \mathrm{~d} f, \quad \widehat{y}(f)=\int_{-\infty}^{\infty} y(t) \mathrm{e}^{-\mathrm{i} 2 \pi f t} \mathrm{~d} t .
$$

If $y(t)$ is symmetric about $t=0$ then

$$
y(t)=\frac{1}{\pi} \int_{0}^{\infty} \widehat{y}(\omega) \cos \omega t \mathrm{~d} \omega, \quad \widehat{y}(\omega)=2 \int_{0}^{\infty} y(t) \cos \omega t \mathrm{~d} t .
$$

If $y(t)$ is anti-symmetric about $t=0$ then

$$
y(t)=\frac{1}{\pi} \int_{0}^{\infty} \hat{y}(\omega) \sin \omega t \mathrm{~d} \omega, \quad \widehat{y}(\omega)=2 \int_{0}^{\infty} y(t) \sin \omega t \mathrm{~d} t
$$

Specific cases

$\widehat{y}(\omega)=2 a \frac{\sin \omega \tau}{\omega} \equiv 2 a \tau \operatorname{sinc}(\omega \tau)$
where $\operatorname{sinc}(x)=\frac{\sin (x)}{x}$

$$
\left.\left.\begin{array}{rl}
y(t) & =a, \\
& =0,
\end{array}|t| \leq \tau \right\rvert\,>\tau\right\} \quad \text { ('Top Hat'), }
$$

$y(t)=\exp \left(-t^{2} / t_{0}^{2}\right) \quad$ (Gaussian),
$y(t)=f(t) \mathrm{e}^{\mathrm{i} \omega_{0} t} \quad$ (modulated function), $\quad \widehat{y}(\omega)=\widehat{f}\left(\omega-\omega_{0}\right)$
$y(t)=\sum_{m=-\infty}^{\infty} \delta(t-m \tau) \quad$ (sampling function)

$$
\left.\begin{array}{rlrl}
y(t) & =a(1-|t| / \tau), & & |t| \leq \tau \\
& =0, & & |t|>\tau
\end{array}\right\} \quad \text { ('Saw-tooth'), }
$$

$$
\widehat{y}(\omega)=t_{0} \sqrt{\pi} \exp \left(-\omega^{2} t_{0}^{2} / 4\right)
$$

$$
\widehat{y}(\omega)=\widehat{f}\left(\omega-\omega_{0}\right)
$$

$$
\widehat{y}(\omega)=\sum_{n=-\infty}^{\infty} \delta(\omega-2 \pi n / \tau)
$$

$$
\hat{y}(\omega)=\frac{2 a}{\omega^{2} \tau}(1-\cos \omega \tau)=a \tau \operatorname{sinc}^{2}\left(\frac{\omega \tau}{2}\right)
$$

Convolution theorem

If $z(t)=\int_{-\infty}^{\infty} x(\tau) y(t-\tau) \mathrm{d} \tau=\int_{-\infty}^{\infty} x(t-\tau) y(\tau) \mathrm{d} \tau \equiv x(t) * y(t)$ then $\quad \widehat{z}(\boldsymbol{\omega})=\widehat{x}(\boldsymbol{\omega}) \widehat{y}(\boldsymbol{\omega})$. Conversely, $\widehat{x y}=\widehat{x} * \widehat{y}$.

Laplace Transforms

If $y(t)$ is a function defined for $t \geq 0$, the Laplace transform $\bar{y}(s)$ is defined by the equation

$$
\bar{y}(s)=\mathcal{L}\{y(t)\}=\int_{0}^{\infty} \mathrm{e}^{-s t} y(t) \mathrm{d} t
$$

$$
\text { Function } y(t) \quad(t>0)
$$ Transform $\bar{y}(s)$

$\delta(t)$	1	Delta function
$\theta(t)$	$\frac{1}{s}$	Unit step function
t^{n}	$\frac{n!}{s^{n+1}}$	
$t^{1 / 2}$	$\frac{1}{2} \sqrt{\frac{\pi}{s^{3}}}$	
$t^{-1 / 2}$	$\sqrt{\frac{\pi}{s}}$	
$\mathrm{e}^{-a t}$	$\frac{1}{(s+a)}$	
$\sin \omega t$	$\frac{\omega}{\left(s^{2}+\omega^{2}\right.}$	
$\cos \omega t$	$\frac{s}{\left(s^{2}+\omega^{2}\right)}$	
$\sinh \omega t$	$\frac{\omega}{\left(s^{2}-\omega^{2}\right)}$	
$\cosh \omega t$	$\frac{s}{\left(s^{2}-\omega^{2}\right)}$	
$\mathrm{e}^{-a t} y(t)$	$\bar{y}(s+a)$	
$y(t-\tau) \theta(t-\tau)$	$e^{-s \tau} \bar{y}(s)$	
$t y(t)$	$-\frac{d \bar{y}}{d s}$	
$\frac{\mathrm{d} y}{\mathrm{~d} t}$	$s \bar{y}(s)-y(0)$	
$\frac{\mathrm{d}^{n} y}{\mathrm{~d} \mathrm{t}^{n}}$	$s^{n} \bar{y}(s)-s^{n-1} y(0)-s^{n-2}\left[\frac{\mathrm{~d} y}{\mathrm{~d} t}\right]_{0} \cdots-\left[\frac{\mathrm{d}^{n-1} y}{\mathrm{~d} t^{n-1}}\right]_{0}$	
$\int_{0}^{t} y(\tau) \mathrm{d} \tau$	$\frac{\bar{y}(s)}{s}$	
$\left.\int_{0}^{t} x(\tau) y(t-\tau) \mathrm{d} \tau\right)$	$\bar{x}(s) \bar{y}(s)$	Convolution theorem
$\int_{0}^{t} x(t-\tau) y(\tau) \mathrm{d} \tau$		

[Note that if $y(t)=0$ for $t<0$ then the Fourier transform of $y(t)$ is $\hat{y}(\omega)=\bar{y}(\mathrm{i} \omega)$.]

Numerical Analysis

Finding the zeros of equations

If the equation is $y=f(x)$ and x_{n} is an approximation to the root then either

$$
\begin{aligned}
x_{n+1} & =x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
\text { or, } x_{n+1} & =x_{n}-\frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)} f\left(x_{n}\right)
\end{aligned}
$$

(Newton)
(Linear interpolation)
are, in general, better approximations.

Numerical integration of differential equations

If $\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x, y)$ then

$$
y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right) \quad \text { where } h=x_{n+1}-x_{n}
$$

(Euler method)
(improved Euler method)

Putting $\quad y_{n+1}^{*}=y_{n}+h f\left(x_{n}, y_{n}\right)$

$$
\text { then } \quad y_{n+1}=y_{n}+\frac{h\left[f\left(x_{n}, y_{n}\right)+f\left(x_{n+1}, y_{n+1}^{*}\right)\right]}{2}
$$

Numerical evaluation of definite integrals

Trapezoidal rule

The interval of integration is divided into n equal sub-intervals, each of width h; then

$$
\begin{aligned}
\int_{a}^{b} f(x) \mathrm{d} x & \approx h\left[c \frac{1}{2} f(a)+f\left(x_{1}\right)+\cdots+f\left(x_{j}\right)+\cdots+\frac{1}{2} f(b)\right] \\
\text { where } h & =(b-a) / n \text { and } x_{j}=a+j h
\end{aligned}
$$

Simpson's rule

The interval of integration is divided into an even number (say $2 n$) of equal sub-intervals, each of width $h=$ $(b-a) / 2 n$; then

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx \frac{h}{3}\left[f(a)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\cdots+2 f\left(x_{2 n-2}\right)+4 f\left(x_{2 n-1}\right)+f(b)\right]
$$

Gauss's integration formulae

These have the general form $\int_{-1}^{1} y(x) \mathrm{d} x \approx \sum_{1}^{n} c_{i} y\left(x_{i}\right)$
For $n=2: \quad x_{i}= \pm 0 \cdot 5773 ; \quad c_{i}=1,1$ (exact for any cubic).
For $n=3: \quad x_{i}=-0 \cdot 7746,0 \cdot 0,0 \cdot 7746 ; \quad c_{i}=0 \cdot 555,0 \cdot 888,0 \cdot 555$ (exact for any quintic).

