

9209-501 Mathematical Formula booklet

Candidates should refer to this 501 formula booklet throughout the course and become familiar with it. Candidates will need to use a clean copy of this document for the 9205-501 exam and for the sample questions.

(Please note we have extracted formula which is relevant to this unit. The full online version is not required.)

Contents

1 Series	3
Arithmetic and Geometric progressions; Binomial expansion; Taylor and Maclaurin Series; Power series with real variables; Integer series	
2 Vector Algebra	5
Scalar product; Equation of a line; Equation of a plane; Vector product	J
3 Matrix Algebra	6
Unit matrices; Products; Transpose matrices; Inverse matrices; Determinants; 2 x 2 matrices; Product rules; Orthogonal matrices; Solving sets of linear simultaneous equations; Eigenvalues and eigenvectors; Commutators	
4 Vector Calculus	8
Notation; Identities; Grad, Div, Curl and the Lapacian	0
5 Complex Variables	10
Complex numbers; De Moivre's theorem; Power series for complex variables	
6 Trigonometric Formulae	11
Relations between sides and angles of any plane triangle	
7 Hyperbolic Functions	12
Relations of the functions; Inverse functions	
8 Limits	14
9 Differentiation	15
10 Integration	16
Standard forms; Standard substitutions; Integration by parts; Differentiation of an integral;	
Dirac ^{ð–} 'function'; Reduction formulae	_
11 Differential Equations	19
Diffusion (conduction) equation; Wave equation; Bessel's equation; Laplace's equation	~
12 Functions of Several Variables	21
Taylor series for two variables; Stationary points; Changing variables: the chain rule; Changing variables in surface and volume integrals - Jacobians	
13 Fourier Series and Transforms	23
Fourier series; Fourier series for other ranges; Fourier series for odd and even functions;	20
Complex form of Fourier series; Discrete Fourier series; Fourier transforms; Convolution	
theorem	
14 Laplace Transforms	27
15 Numerical Analysis	28
Finding the zeros of equations; Numerical integration of differential equations; Numerical evaluation of definite integrals	

Series

Arithmetic and Geometric progressions

A.P.
$$S_n = a + (a + d) + (a + 2d) + \dots + [a + (n - 1)d] = \frac{n}{2}[2a + (n - 1)d]$$

G.P. $S_n = a + ar + ar^2 + \dots + ar^{n-1} = a\frac{1 - r^n}{1 - r}, \qquad \left(S_{\infty} = \frac{a}{1 - r} \quad \text{for } |r| < 1\right)$

(These results also hold for complex series.)

Binomial expansion

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \cdots$$

If *n* is a positive integer the series terminates and is valid for all *x*: the term in x^r is ${}^nC_rx^r$ or $\binom{n}{r}$ where ${}^nC_r \equiv \frac{n!}{r!(n-r)!}$ is the number of different ways in which an unordered sample of *r* objects can be selected from a set of *n* objects without replacement. When *n* is not a positive integer, the series does not terminate: the infinite series is convergent for |x| < 1.

Taylor and Maclaurin Series

If y(x) is well-behaved in the vicinity of x = a then it has a Taylor series,

$$y(x) = y(a+u) = y(a) + u\frac{dy}{dx} + \frac{u^2}{2!}\frac{d^2y}{dx^2} + \frac{u^3}{3!}\frac{d^3y}{dx^3} + \cdots$$

where u = x - a and the differential coefficients are evaluated at x = a. A Maclaurin series is a Taylor series with a = 0,

$$y(x) = y(0) + x\frac{dy}{dx} + \frac{x^2}{2!}\frac{d^2y}{dx^2} + \frac{x^3}{3!}\frac{d^3y}{dx^3} + \cdots$$

Power series with real variables

$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$	valid for all <i>x</i>
$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n+1} \frac{x^n}{n} + \dots$	valid for $-1 < x \le 1$
$\cos x \qquad = \frac{e^{ix} + e^{-ix}}{2} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$	valid for all values of <i>x</i>
$\sin x \qquad = \frac{e^{ix} - e^{-ix}}{2i} = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$	valid for all values of <i>x</i>
$\tan x = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \cdots$	valid for $-\frac{\pi}{2} < x < \frac{\pi}{2}$
$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots$	valid for $-1 \le x \le 1$
$\sin^{-1} x = x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} + \cdots$	valid for $-1 < x < 1$

Integer series

$$\begin{split} \sum_{1}^{N} n &= 1+2+3+\dots+N = \frac{N(N+1)}{2} \\ \sum_{1}^{N} n^{2} &= 1^{2}+2^{2}+3^{2}+\dots+N^{2} = \frac{N(N+1)(2N+1)}{6} \\ \sum_{1}^{N} n^{3} &= 1^{3}+2^{3}+3^{3}+\dots+N^{3} = [1+2+3+\dots N]^{2} = \frac{N^{2}(N+1)^{2}}{4} \\ \sum_{1}^{\infty} \frac{(-1)^{n+1}}{n} &= 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\dots = \ln 2 \\ \sum_{1}^{\infty} \frac{(-1)^{n+1}}{2n-1} &= 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\dots=\frac{\pi}{4} \\ \sum_{1}^{\infty} \frac{1}{n^{2}} &= 1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\dots=\frac{\pi^{2}}{6} \\ \sum_{1}^{N} n(n+1)(n+2) &= 1.2.3+2.3.4+\dots+N(N+1)(N+2) = \frac{N(N+1)(N+2)(N+3)}{4} \end{split}$$

This last result is a special case of the more general formula,

$$\sum_{1}^{N} n(n+1)(n+2)\dots(n+r) = \frac{N(N+1)(N+2)\dots(N+r)(N+r+1)}{r+2}.$$

Vector Algebra

If *i*, *j*, *k* are orthonormal vectors and $A = A_x i + A_y j + A_z k$ then $|A|^2 = A_x^2 + A_y^2 + A_z^2$. [Orthonormal vectors \equiv orthogonal unit vectors.]

Scalar product

$$A \cdot B = |A| |B| \cos \theta$$
$$= A_x B_x + A_y B_y + A_z B_z = [A_x A_y A_z] \begin{bmatrix} B_x \\ B_y \\ B_z \end{bmatrix}$$

where θ is the angle between the vectors

Scalar multiplication is commutative: $A \cdot B = B \cdot A$.

Equation of a line

A point $r \equiv (x, y, z)$ lies on a line passing through a point *a* and parallel to vector *b* if

 $r = a + \lambda b$

with λ a real number.

Equation of a plane

A point $r \equiv (x, y, z)$ is on a plane if either (a) $r \cdot \hat{d} = |d|$, where *d* is the normal from the origin to the plane, or (b) $\frac{x}{X} + \frac{y}{Y} + \frac{z}{Z} = 1$ where *X*, *Y*, *Z* are the intercepts on the axes.

Vector product

 $A \times B = n |A| |B| \sin \theta$, where θ is the angle between the vectors and *n* is a unit vector normal to the plane containing *A* and *B* in the direction for which *A*, *B*, *n* form a right-handed set of axes.

 $A \times B$ in determinant form

 $A \times B$ in matrix form

[0	$-A_z$	Av	Bx
Az	0	$-A_x$	By
$-A_{\nu}$	$A_{\rm x}$	0	B ₂
	$\begin{bmatrix} 0\\ A_z\\ -A_y \end{bmatrix}$	$\begin{bmatrix} 0 & -A_z \\ A_z & 0 \\ -A_y & A_x \end{bmatrix}$	$\begin{bmatrix} 0 & -A_z & A_y \\ A_z & 0 & -A_x \\ -A_y & A_x & 0 \end{bmatrix}$

Vector multiplication is not commutative: $A \times B = -B \times A$.

Matrix Algebra

Unit matrices

The unit matrix *I* of order *n* is a square matrix with all diagonal elements equal to one and all off-diagonal elements zero, i.e., $(I)_{ij} = \delta_{ij}$. If *A* is a square matrix of order *n*, then AI = IA = A. Also $I = I^{-1}$. *I* is sometimes written as I_n if the order needs to be stated explicitly.

Products

If *A* is a $(n \times l)$ matrix and *B* is a $(l \times m)$ then the product *AB* is defined by

$$(AB)_{ij} = \sum_{k=1}^{l} A_{ik} B_k$$

In general $AB \neq BA$.

Transpose matrices

If A is a matrix, then transpose matrix A^T is such that $(A^T)_{ij} = (A)_{ji}$.

Inverse matrices

If A is a square matrix with non-zero determinant, then its inverse A^{-1} is such that $AA^{-1} = A^{-1}A = I$.

$$(A^{-1})_{ij} = \frac{\text{transpose of cofactor of } A_{ij}}{|A|}$$

where the cofactor of A_{ij} is $(-1)^{i+j}$ times the determinant of the matrix A with the j-th row and i-th column deleted.

Determinants

If *A* is a square matrix then the determinant of *A*, $|A| (\equiv \det A)$ is defined by

 $|A| = \sum_{i,j,k,\dots} \epsilon_{ijk\dots} A_{1i} A_{2j} A_{3k} \dots$

where the number of the suffixes is equal to the order of the matrix.

2×2 matrices

If
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 then,
 $|A| = ad - bc \qquad A^{T} = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \qquad A^{-1} = \frac{1}{|A|} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

Product rules

$(AB\dots N)^T = N^T\dots B^T A^T$	
$(ABN)^{-1} = N^{-1}B^{-1}A^{-1}$	(if individual inverses exist)
$ AB\dots N = A B \dots N $	(if individual matrices are square)

Orthogonal matrices

An orthogonal matrix Q is a square matrix whose columns q_i form a set of orthonormal vectors. For any orthogonal matrix Q,

 $Q^{-1} = Q^T$, $|Q| = \pm 1$, Q^T is also orthogonal.

Solving sets of linear simultaneous equations

If *A* is square then Ax = b has a unique solution $x = A^{-1}b$ if A^{-1} exists, i.e., if $|A| \neq 0$.

If *A* is square then Ax = 0 has a non-trivial solution if and only if |A| = 0.

An over-constrained set of equations Ax = b is one in which *A* has *m* rows and *n* columns, where *m* (the number of equations) is greater than *n* (the number of variables). The best solution *x* (in the sense that it minimizes the error |Ax - b|) is the solution of the *n* equations $A^TAx = A^Tb$. If the columns of *A* are orthonormal vectors then $x = A^Tb$.

Eigenvalues and eigenvectors

The *n* eigenvalues λ_i and eigenvectors u_i of an $n \times n$ matrix *A* are the solutions of the equation $Au = \lambda u$. The eigenvalues are the zeros of the polynomial of degree *n*, $P_n(\lambda) = |A - \lambda I|$. If *A* is Hermitian then the eigenvalues λ_i are real and the eigenvectors u_i are mutually orthogonal. $|A - \lambda I| = 0$ is called the characteristic equation of the matrix *A*.

$$\operatorname{Tr} A = \sum_{i} \lambda_{i}, \quad \operatorname{also} |A| = \prod_{i} \lambda_{i}.$$

If S is a symmetric matrix, Λ is the diagonal matrix whose diagonal elements are the eigenvalues of S, and U is the matrix whose columns are the normalized eigenvectors of A, then

$$U^T S U = \Lambda$$
 and $S = U \Lambda U^T$.

If x is an approximation to an eigenvector of A then $x^T A x / (x^T x)$ (Rayleigh's quotient) is an approximation to the corresponding eigenvalue.

Commutators

$$\begin{split} [A, B] &\equiv AB - BA \\ [A, B] &= -[B, A] \\ [A, B]^{\dagger} &= [B^{\dagger}, A^{\dagger}] \\ [A + B, C] &= [A, C] + [B, C] \\ [AB, C] &= A[B, C] + [A, C]B \\ [A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0 \end{split}$$

Vector Calculus

Notation

 ϕ is a scalar function of a set of position coordinates. In Cartesian coordinates $\phi = \phi(x, y, z)$; in cylindrical polar coordinates $\phi = \phi(\rho, \varphi, z)$; in spherical polar coordinates $\phi = \phi(r, \theta, \varphi)$; in cases with radial symmetry $\phi = \phi(r)$. *A* is a vector function whose components are scalar functions of the position coordinates: in Cartesian coordinates $A = iA_x + jA_y + kA_z$, where A_x, A_y, A_z are independent functions of *x*, *y*, *z*.

In Cartesian coordinates ∇ ('del') $\equiv i \frac{\partial}{\partial x} + j \frac{\partial}{\partial y} + k \frac{\partial}{\partial z} \equiv \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{bmatrix}$

Identities

 $\begin{array}{ll} \operatorname{grad}(\phi_1 + \phi_2) \equiv \operatorname{grad}\phi_1 + \operatorname{grad}\phi_2 & \operatorname{div}(A_1 + A_2) \equiv \operatorname{div}A_1 + \operatorname{div}A_2 \\ \operatorname{grad}(\phi_1\phi_2) \equiv \phi_1 \operatorname{grad}\phi_2 + \phi_2 \operatorname{grad}\phi_1 \\ \operatorname{curl}(A_1 + A_2) \equiv \operatorname{curl}A_1 + \operatorname{curl}A_2 \\ \operatorname{div}(\phi A) \equiv \phi \operatorname{div}A + (\operatorname{grad}\phi) \cdot A, & \operatorname{curl}(\phi A) \equiv \phi \operatorname{curl}A + (\operatorname{grad}\phi) \times A \\ \operatorname{div}(A_1 \times A_2) \equiv A_2 \cdot \operatorname{curl}A_1 - A_1 \cdot \operatorname{curl}A_2 \\ \operatorname{curl}(A_1 \times A_2) \equiv A_1 \operatorname{div}A_2 - A_2 \operatorname{div}A_1 + (A_2 \cdot \operatorname{grad})A_1 - (A_1 \cdot \operatorname{grad})A_2 \\ \operatorname{div}(\operatorname{curl}A) \equiv 0, & \operatorname{curl}(\operatorname{grad}\phi) \equiv 0 \\ \operatorname{curl}(\operatorname{curl}A) \equiv \operatorname{grad}(\operatorname{div}A) - \operatorname{div}(\operatorname{grad}A) \equiv \operatorname{grad}(\operatorname{div}A) - \nabla^2 A \\ \operatorname{grad}(A_1 \cdot A_2) \equiv A_1 \times (\operatorname{curl}A_2) + (A_1 \cdot \operatorname{grad})A_2 + A_2 \times (\operatorname{curl}A_1) + (A_2 \cdot \operatorname{grad})A_1 \end{array}$

	Cartesian Coordinates	Cylindrical Coordinates	Spherical Coordinates
Conversion to Cartesian Coordinates		$x = \rho \cos \varphi$ $y = \rho \sin \varphi$ $z = z$	$x = r \cos \varphi \sin \theta y = r \sin \varphi \sin \theta$ $z = r \cos \theta$
Vector A	$A_x i + A_y j + A_z k$	$A_{\rho}\widehat{\rho} + A_{\varphi}\widehat{\varphi} + A_{z}\widehat{z}$	$A_r \hat{r} + A_\theta \hat{\theta} + A_\varphi \hat{\varphi}$
Gradient $\nabla \phi$	$\frac{\partial \phi}{\partial x}i + \frac{\partial \phi}{\partial y}j + \frac{\partial \phi}{\partial z}k$	$\frac{\partial \phi}{\partial \rho} \widehat{\rho} + \frac{1}{\rho} \frac{\partial \phi}{\partial \varphi} \widehat{\varphi} + \frac{\partial \phi}{\partial z} \widehat{z}$	$\frac{\partial \phi}{\partial r}\hat{r} + \frac{1}{r}\frac{\partial \phi}{\partial \theta}\hat{\theta} + \frac{1}{r\sin\theta}\frac{\partial \phi}{\partial \varphi}\hat{\varphi}$
Divergence $\nabla \cdot A$	$\frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$	$\frac{1}{\rho} \frac{\partial(\rho A_{\rho})}{\partial \rho} + \frac{1}{\rho} \frac{\partial A_{\varphi}}{\partial \varphi} + \frac{\partial A_{z}}{\partial z}$	$\frac{1}{r^2}\frac{\partial(r^2A_r)}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial A_{\theta}\sin\theta}{\partial\theta} + \frac{1}{r\sin\theta}\frac{\partial A_{\varphi}}{\partial\varphi}$
$\operatorname{Curl}\nabla\times A$	$\begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix}$	$\begin{vmatrix} \frac{1}{\rho} \hat{\rho} & \hat{\varphi} & \frac{1}{\rho} \hat{z} \\ \frac{\partial}{\partial \rho} & \frac{\partial}{\partial \varphi} & \frac{\partial}{\partial z} \\ A_{\rho} & \rho A_{\varphi} & A_{z} \end{vmatrix}$	$\begin{vmatrix} \frac{1}{r^2 \sin \theta} \hat{r} & \frac{1}{r \sin \theta} \hat{\theta} & \frac{1}{r} \hat{\varphi} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \varphi} \\ A_r & r A_\theta & r A_\varphi \sin \theta \end{vmatrix}$
Laplacian $\nabla^2 \phi$	$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}$	$\frac{1}{\rho}\frac{\partial}{\partial\rho}\left(\rho\frac{\partial\phi}{\partial\rho}\right) + \frac{1}{\rho^2}\frac{\partial^2\phi}{\partial\phi^2} + \frac{\partial^2\phi}{\partial z^2}$	$\frac{\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\phi}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\phi}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2\phi}{\partial\varphi^2}$

Grad, Div, Curl and the Laplacian

Complex Variables

Complex numbers

The complex number $z = x + iy = r(\cos\theta + i\sin\theta) = r e^{i(\theta + 2n\pi)}$, where $i^2 = -1$ and n is an arbitrary integer. The real quantity r is the modulus of z and the angle θ is the argument of z. The complex conjugate of z is $z^* = x - iy = r(\cos\theta - i\sin\theta) = r e^{-i\theta}$; $zz^* = |z|^2 = x^2 + y^2$

De Moivre's theorem

 $(\cos\theta + i\sin\theta)^n = e^{in\theta} = \cos n\theta + i\sin n\theta$

Power series for complex variables.

e ^z	$= 1 + z + \frac{z^2}{2!} + \dots + \frac{z^n}{n!} + \dots$	convergent for all finite z
$\sin z$	$=z-\frac{z^3}{3!}+\frac{z^5}{5!}-\cdots$	convergent for all finite z
cosz	$= 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \cdots$	convergent for all finite z
ln(1+z)	$z = z - \frac{z^2}{2} + \frac{z^3}{3} - \cdots$	principal value of $ln(1+z)$

This last series converges both on and within the circle |z| = 1 except at the point z = -1.

$$\tan^{-1} z = z - \frac{z^3}{3} + \frac{z^5}{5} - \cdots$$

This last series converges both on and within the circle |z| = 1 except at the points $z = \pm i$.

$$(1+z)^n = 1 + nz + \frac{n(n-1)}{2!}z^2 + \frac{n(n-1)(n-2)}{3!}z^3 + \cdots$$

This last series converges both on and within the circle |z| = 1 except at the point z = -1.

Trigonometric Formulae

$$\cos^2 A + \sin^2 A = 1 \qquad \sec^2 A - \tan^2 A = 1 \qquad \csc^2 A - \cot^2 A = 1$$

$$\sin 2A = 2\sin A \cos A \qquad \cos 2A = \cos^2 A - \sin^2 A \qquad \tan 2A = \frac{2\tan A}{1 - \tan^2 A}.$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos A \cos B = \frac{\cos(A + B) + \cos(A - B)}{2}$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin A \sin B = \frac{\cos(A - B) - \cos(A + B)}{2}$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin A \cos B = \frac{\sin(A + B) + \sin(A - B)}{2}$$

$$\sin A + \sin B = 2 \sin \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\cos^2 A = \frac{1 + \cos 2A}{2}$$

$$\sin^2 A = \frac{1 - \cos 2A}{2}$$

$$\cos A + \cos B = 2 \cos \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\cos^3 A = \frac{3 \cos A + \cos 3A}{4}$$

$$\cos A - \cos B = -2 \sin \frac{A + B}{2} \sin \frac{A - B}{2}$$

$$\sin^3 A = \frac{3 \sin A - \sin 3A}{4}$$

Relations between sides and angles of any plane triangle

In a plane triangle with angles A, B, and C and sides opposite a, b, and c respectively,

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = \text{diameter of circumscribed circle.}$$

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

$$a = b \cos C + c \cos B$$

$$\cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}$$

$$\tan \frac{A - B}{2} = \frac{a - b}{a + b} \cot \frac{C}{2}$$

$$\operatorname{area} = \frac{1}{2}ab \sin C = \frac{1}{2}bc \sin A = \frac{1}{2}ca \sin B = \sqrt{s(s - a)(s - b)(s - c)}, \quad \text{where } s = \frac{1}{2}(a + b + c)$$

Hyperbolic Functions

$$\cosh x = \frac{1}{2}(e^{x} + e^{-x}) = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \cdots$$
valid for all x
$$\sinh x = \frac{1}{2}(e^{x} - e^{-x}) = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \cdots$$
valid for all x
$$\cosh x = \cos x$$

$$\sinh x = i \sin x$$

$$\sinh x = i \sin x$$

$$\tanh x = \frac{\sinh x}{\cosh x}$$

$$\operatorname{sech} x = \frac{1}{\cosh x}$$

$$\cosh x = \frac{1}{\sinh x}$$

$$\cosh^{2} x - \sinh^{2} x = 1$$

For large positive *x*:

$$\cosh x \approx \sinh x \rightarrow \frac{e^x}{2}$$

 $\tanh x \rightarrow 1$
For large negative *x*:
 $\cosh x \approx -\sinh x \rightarrow \frac{e^{-x}}{2}$
 $\tanh x \rightarrow -1$

Relations of the functions

$$\begin{split} \sinh x &= -\sinh(-x) & \operatorname{sech} x &= \operatorname{sech}(-x) \\ \cosh x &= \cosh(-x) & \operatorname{cosech} x &= -\operatorname{cosech}(-x) \\ \tanh x &= -\tanh(-x) & \operatorname{cosech} x &= -\operatorname{cosech}(-x) \\ \sinh x &= \frac{2\tanh(x/2)}{1-\tanh^2(x/2)} = \frac{\tanh x}{\sqrt{1-\tanh^2 x}} & \cosh x &= \frac{1+\tanh^2(x/2)}{1-\tanh^2(x/2)} = \frac{1}{\sqrt{1-\tanh^2 x}} \\ \tanh x &= \sqrt{1-\operatorname{sech}^2 x} & \operatorname{cosech} x &= \sqrt{1-\tanh^2 x} \\ \tanh x &= \sqrt{1-\operatorname{sech}^2 x} & \operatorname{sech} x &= \sqrt{1-\tanh^2 x} \\ \coth x &= \sqrt{\operatorname{cosech}^2 x + 1} & \operatorname{cosech} x &= \sqrt{1-\tanh^2 x} \\ \coth x &= \sqrt{\operatorname{cosech}^2 x + 1} & \operatorname{cosech} x &= \sqrt{\operatorname{coth}^2 x - 1} \\ \sinh(x/2) &= \sqrt{\frac{\cosh x - 1}{2}} & \cosh x \\ \tanh(x/2) &= \frac{\cosh x - 1}{\sinh x} = \frac{\sinh x}{\cosh x + 1} \\ \sinh(2x) &= 2\sinh x \cosh x & \tanh(2x) = \frac{2\tanh x}{1 + \tanh^2 x} \\ \cosh(2x) &= \cosh^2 x + \sinh^2 x & \cosh^2 x - 1 = 1 + 2\sinh^2 x \\ \sinh(3x) &= 3\sinh x + 4\sinh^3 x & \cosh^3 x - 3\cosh x \\ \tanh(3x) &= \frac{3\tanh x + \tanh^3 x}{1 + 3\tanh^2 x} \end{split}$$

$$sinh(x \pm y) = sinh x \cosh y \pm \sinh x \sinh y$$

$$cosh(x \pm y) = cosh x \cosh y \pm sinh x \sinh y$$

$$tanh(x \pm y) = \frac{tanh x \pm tanh y}{1 \pm tanh x tanh y}$$

$$sinh x + sinh y = 2 sinh \frac{1}{2}(x + y) \cosh \frac{1}{2}(x - y) \qquad cosh x + cosh y = 2 cosh \frac{1}{2}(x + y) \cosh \frac{1}{2}(x - y)$$

$$sinh x - sinh y = 2 cosh \frac{1}{2}(x + y) sinh \frac{1}{2}(x - y) \qquad cosh x - cosh y = 2 sinh \frac{1}{2}(x + y) sinh \frac{1}{2}(x - y)$$

$$sinh x \pm cosh x = \frac{1 \pm tanh(x/2)}{1 \mp tanh(x/2)} = e^{\pm x}$$

$$tanh x \pm tanh y = \frac{sinh(x \pm y)}{cosh x cosh y}$$

$$coth x \pm coth y = \pm \frac{sinh(x \pm y)}{sinh x sinh y}$$

Inverse functions

$$\begin{aligned} \sinh^{-1}\frac{x}{a} &= \ln\left(\frac{x+\sqrt{x^2+a^2}}{a}\right) & \text{for } -\infty < x < \infty \\ \cosh^{-1}\frac{x}{a} &= \ln\left(\frac{x+\sqrt{x^2-a^2}}{a}\right) & \text{for } x \ge a \\ \tanh^{-1}\frac{x}{a} &= \frac{1}{2}\ln\left(\frac{a+x}{a-x}\right) & \text{for } x^2 < a^2 \\ \coth^{-1}\frac{x}{a} &= \frac{1}{2}\ln\left(\frac{x+a}{x-a}\right) & \text{for } x^2 > a^2 \\ \operatorname{sech}^{-1}\frac{x}{a} &= \ln\left(\frac{a}{x}+\sqrt{\frac{a^2}{x^2}-1}\right) & \text{for } 0 < x \le a \\ \operatorname{cosech}^{-1}\frac{x}{a} &= \ln\left(\frac{a}{x}+\sqrt{\frac{a^2}{x^2}+1}\right) & \text{for } x \ne 0 \end{aligned}$$

Limits

$$n^{c}x^{n} \to 0 \text{ as } n \to \infty \text{ if } |x| < 1 \text{ (any fixed } c)$$

$$x^{n}/n! \to 0 \text{ as } n \to \infty \text{ (any fixed } x)$$

$$(1 + x/n)^{n} \to e^{x} \text{ as } n \to \infty, x \ln x \to 0 \text{ as } x \to 0$$
If $f(a) = g(a) = 0$ then $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$ (l'Hôpital's rule)

Differentiation

Leibniz Theorem

$$(uv)' = u'v + uv', \quad \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$(uv)^{(n)} = u^{(n)}v + nu^{(n-1)}v^{(1)} + \dots + {^n}C_r u^{(n-r)}v^{(r)} + \dots + uv^{(n)}$$
where ${^n}C_r \equiv \binom{n}{r} = \frac{n!}{r!(n-r)!}$

$$\frac{d}{dx}(\sin x) = \cos x \qquad \qquad \frac{d}{dx}(\sinh x) = \cosh x$$

$$\frac{d}{dx}(\cos x) = -\sin x \qquad \qquad \frac{d}{dx}(\cosh x) = \sinh x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x \qquad \qquad \frac{d}{dx}(\cosh x) = \sinh x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x \qquad \qquad \frac{d}{dx}(\operatorname{sech} x) = -\operatorname{sech} x \tanh x$$

$$\frac{d}{dx}(\operatorname{cose} x) = -\operatorname{cosec}^2 x \qquad \qquad \frac{d}{dx}(\operatorname{cosech} x) = -\operatorname{cosech}^2 x$$

$$\frac{d}{dx}(\operatorname{cosech} x) = -\operatorname{cosech} x \coth x$$

Integration

Standard forms

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + c \qquad \text{for } n \neq -1$$

$$\int \frac{1}{x} \, dx = \ln x + c \qquad \int \ln x \, dx = x(\ln x - 1) + c$$

$$\int e^{ax} \, dx = \frac{1}{a} e^{ax} + c \qquad \int x e^{ax} \, dx = e^{ax} \left(\frac{x}{a} - \frac{1}{a^2}\right) + c$$

$$\int x \ln x \, dx = \frac{x^2}{2} \left(\ln x - \frac{1}{2}\right) + c$$

$$\int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + c = \frac{1}{2a} \ln \left(\frac{a + x}{a - x}\right) + c \qquad \text{for } x^2 < a^2$$

$$\int \frac{1}{x^2 - a^2} \, dx = -\frac{1}{a} \coth^{-1} \left(\frac{x}{a}\right) + c = \frac{1}{2a} \ln \left(\frac{x - a}{x + a}\right) + c \qquad \text{for } x^2 > a^2$$

$$\int \frac{1}{\sqrt{x^2 \pm a^2}} \, dx = \frac{-1}{2(n-1)} \frac{1}{(x^2 \pm a^2)^{n-1}} + c \qquad \text{for } n \neq 1$$

$$\int \frac{x}{\sqrt{x^2 \pm a^2}} \, dx = \frac{1}{2} \ln(x^2 \pm a^2) + c$$

$$\int \frac{1}{\sqrt{x^2 \pm a^2}} \, dx = \ln \left(x + \sqrt{x^2 \pm a^2}\right) + c$$

$$\int \frac{1}{\sqrt{x^2 \pm a^2}} \, dx = \ln \left(x + \sqrt{x^2 \pm a^2}\right) + c$$

$$\int \frac{\sqrt{x^2 \pm a^2}}{\sqrt{x^2 \pm a^2}} \, dx = \sqrt{x^2 \pm a^2} + c$$

$$\int \sqrt{a^2 - x^2} \, dx = \frac{1}{2} \left[x\sqrt{a^2 - x^2} + a^2 \sin^{-1}\left(\frac{x}{a}\right)\right] + c$$

Standard substitutions

If the integrand is a function of: substitute:

$$\begin{array}{ll} (a^2 - x^2) \mbox{ or } \sqrt{a^2 - x^2} & x = a \sin \theta \mbox{ or } x = a \cos \theta \\ (x^2 + a^2) \mbox{ or } \sqrt{x^2 + a^2} & x = a \tan \theta \mbox{ or } x = a \sinh \theta \\ (x^2 - a^2) \mbox{ or } \sqrt{x^2 - a^2} & x = a \sec \theta \mbox{ or } x = a \cosh \theta \end{array}$$

If the integrand is a rational function of $\sin x$ or $\cos x$ or both, substitute $t = \tan(x/2)$ and use the results:

$$\sin x = \frac{2t}{1+t^2}$$
 $\cos x = \frac{1-t^2}{1+t^2}$ $dx = \frac{2 dt}{1+t^2}$

If the integrand is of the form: substitute:

$$\int \frac{\mathrm{d}x}{(ax+b)\sqrt{px+q}} \qquad px+q = u^2$$
$$\int \frac{\mathrm{d}x}{(ax+b)\sqrt{px^2+qx+r}} \qquad ax+b = \frac{1}{u}.$$

Integration by parts

$$\int_{a}^{b} u \, \mathrm{d}v = uv \Big|_{a}^{b} - \int_{a}^{b} v \, \mathrm{d}u$$

Differentiation of an integral

If $f(x, \alpha)$ is a function of x containing a parameter α and the limits of integration a and b are functions of α then

$$\frac{\mathrm{d}}{\mathrm{d}\alpha}\int_{a(\alpha)}^{b(\alpha)}f(x,\alpha)\,\mathrm{d}x=f(b,\alpha)\frac{\mathrm{d}b}{\mathrm{d}\alpha}-f(a,\alpha)\frac{\mathrm{d}a}{\mathrm{d}\alpha}+\int_{a(\alpha)}^{b(\alpha)}\frac{\partial}{\partial\alpha}f(x,\alpha)\,\mathrm{d}x.$$

Special case,

$$\frac{\mathrm{d}}{\mathrm{d}x}\int_{a}^{x}f(y)\,\mathrm{d}y=f(x).$$

Dirac δ -'function'

$$\begin{split} \delta(t-\tau) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp[i\omega(t-\tau)] \ \mathrm{d}\omega. \\ &\text{If } f(t) \text{ is an arbitrary function of } t \text{ then } \int_{-\infty}^{\infty} \delta(t-\tau) f(t) \ \mathrm{d}t = f(\tau). \\ &\delta(t) = 0 \text{ if } t \neq 0, \text{ also } \int_{-\infty}^{\infty} \delta(t) \ \mathrm{d}t = 1 \end{split}$$

Reduction formulae

Factorials

$$n! = n(n-1)(n-2)...1, \qquad 0! = 1.$$

Stirling's formula for large n: $\ln(n!) \approx n \ln n - n.$
For any $p > -1$, $\int_0^\infty x^p e^{-x} dx = p \int_0^\infty x^{p-1} e^{-x} dx = p!.$ $(-1/2)! = \sqrt{\pi}, \qquad (1/2)! = \sqrt{\pi}/2,$ etc.
For any $p, q > -1$, $\int_0^1 x^p (1-x)^q dx = \frac{p!q!}{(p+q+1)!}.$

Trigonometrical

If m, n are integers,

 $\int_0^{\pi/2} \sin^m \theta \, \cos^n \theta \, d\theta = \frac{m-1}{m+n} \int_0^{\pi/2} \sin^{m-2} \theta \, \cos^n \theta \, d\theta = \frac{n-1}{m+n} \int_0^{\pi/2} \sin^m \theta \, \cos^{n-2} \theta \, d\theta$ and can therefore be reduced eventually to one of the following integrals

$$\int_{0}^{\pi/2} \sin \theta \, \cos \theta \, d\theta = \frac{1}{2}, \qquad \int_{0}^{\pi/2} \sin \theta \, d\theta = 1, \qquad \int_{0}^{\pi/2} \cos \theta \, d\theta = 1, \qquad \int_{0}^{\pi/2} d\theta = \frac{\pi}{2}.$$

Other

If
$$I_n = \int_0^\infty x^n \exp(-\alpha x^2) \, dx$$
 then $I_n = \frac{(n-1)}{2\alpha} I_{n-2}$, $I_0 = \frac{1}{2} \sqrt{\frac{\pi}{\alpha}}$, $I_1 = \frac{1}{2\alpha}$.

Diffusion (conduction) equation

$$\frac{\partial \psi}{\partial t} = \kappa \nabla^2 \psi$$

Wave equation

$$\nabla^2 \psi = \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2}$$

Bessel's equation

$$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + (x^{2} - m^{2})y = 0,$$

solutions of which are Bessel functions $J_m(x)$ of order *m*.

Series form of Bessel functions of the first kind

$$J_m(x) = \sum_{k=0}^{\infty} \frac{(-1)^k (x/2)^{m+2k}}{k! (m+k)!}$$
 (integer *m*).

The same general form holds for non-integer m > 0.

Laplace's equation

 $\nabla^2 u = 0$

If expressed in two-dimensional polar coordinates (see section 4), a solution is

 $u(\rho,\varphi) = \left[A\rho^{n} + B\rho^{-n}\right]\left[C\exp(in\varphi) + D\exp(-in\varphi)\right]$

where A, B, C, D are constants and n is a real integer.

If expressed in three-dimensional polar coordinates (see section 4) a solution is

 $u(r,\theta,\varphi) = \left[Ar^{l} + Br^{-(l+1)}\right]P_{l}^{m}\left[C\sin m\varphi + D\cos m\varphi\right]$

where *l* and *m* are integers with $l \ge |m| \ge 0$; *A*, *B*, *C*, *D* are constants;

$$P_l^m(\cos\theta) = \sin^{|m|}\theta \left[\frac{\mathrm{d}}{\mathrm{d}(\cos\theta)}\right]^{|m|} P_l(\cos\theta)$$

is the associated Legendre polynomial.

 $P_l^0(1) = 1.$

If expressed in cylindrical polar coordinates (see section 4), a solution is

 $u(\rho, \varphi, z) = J_m(n\rho) [A \cos m\varphi + B \sin m\varphi] [C \exp(nz) + D \exp(-nz)]$ where *m* and *n* are integers; *A*, *B*, *C*, *D* are constants.

Functions of Several Variables

If $\phi = f(x, y, z, ...)$ then $\frac{\partial \phi}{\partial x}$ implies differentiation with respect to *x* keeping *y*, *z*, ... constant.

$$d\phi = \frac{\partial \phi}{\partial x}dx + \frac{\partial \phi}{\partial y}dy + \frac{\partial \phi}{\partial z}dz + \cdots \text{ and } \delta\phi \approx \frac{\partial \phi}{\partial x}\delta x + \frac{\partial \phi}{\partial y}\delta y + \frac{\partial \phi}{\partial z}\delta z + \cdots$$

where x, y, z, ... are independent variables. $\frac{\partial \phi}{\partial x}$ is also written as $\left(\frac{\partial \phi}{\partial x}\right)_{y,...}$ or $\frac{\partial \phi}{\partial x}\Big|_{y,...}$ when the variables kept constant need to be stated explicitly.

If
$$\phi$$
 is a well-behaved function then $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ etc.

If $\phi = f(x, y)$,

$$\left(\frac{\partial\phi}{\partial x}\right)_y = \frac{1}{\left(\frac{\partial x}{\partial\phi}\right)_y}, \qquad \left(\frac{\partial\phi}{\partial x}\right)_y \left(\frac{\partial x}{\partial y}\right)_\phi \left(\frac{\partial y}{\partial\phi}\right)_x = -1.$$

Taylor series for two variables

If $\phi(x, y)$ is well-behaved in the vicinity of x = a, y = b then it has a Taylor series

$$\phi(x,y) = \phi(a+u,b+v) = \phi(a,b) + u\frac{\partial\phi}{\partial x} + v\frac{\partial\phi}{\partial y} + \frac{1}{2!}\left(u^2\frac{\partial^2\phi}{\partial x^2} + 2uv\frac{\partial^2\phi}{\partial x\partial y} + v^2\frac{\partial^2\phi}{\partial y^2}\right) + \cdots$$

where x = a + u, y = b + v and the differential coefficients are evaluated at x = a, y = b

Stationary points

A function $\phi = f(x, y)$ has a stationary point when $\frac{\partial \phi}{\partial x} = \frac{\partial \phi}{\partial y} = 0$. Unless $\frac{\partial^2 \phi}{\partial x^2} = \frac{\partial^2 \phi}{\partial y^2} = \frac{\partial^2 \phi}{\partial x \partial y} = 0$, the following conditions determine whether it is a minimum, a maximum or a saddle point.

$$\begin{array}{ll} \text{Minimum:} & \frac{\partial^2 \phi}{\partial x^2} > 0, \text{ or } & \frac{\partial^2 \phi}{\partial y^2} > 0, \\ \text{Maximum:} & \frac{\partial^2 \phi}{\partial x^2} < 0, \text{ or } & \frac{\partial^2 \phi}{\partial y^2} < 0, \end{array} \right\} \quad \text{and} \quad \frac{\partial^2 \phi}{\partial x^2} \frac{\partial^2 \phi}{\partial y^2} > \left(\frac{\partial^2 \phi}{\partial x \partial y}\right)^2 \\ \text{Saddle point:} & \frac{\partial^2 \phi}{\partial x^2} \frac{\partial^2 \phi}{\partial y^2} < \left(\frac{\partial^2 \phi}{\partial x \partial y}\right)^2 \end{array}$$

If $\frac{\partial^2 \phi}{\partial x^2} = \frac{\partial^2 \phi}{\partial y^2} = \frac{\partial^2 \phi}{\partial x \partial y} = 0$ the character of the turning point is determined by the next higher derivative.

Changing variables: the chain rule

If $\phi = f(x, y, ...)$ and the variables x, y, ... are functions of independent variables u, v, ... then

$$\frac{\partial \phi}{\partial u} = \frac{\partial \phi}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial \phi}{\partial y} \frac{\partial y}{\partial u} + \cdots$$
$$\frac{\partial \phi}{\partial v} = \frac{\partial \phi}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial \phi}{\partial y} \frac{\partial y}{\partial v} + \cdots$$
etc

Changing variables in surface and volume integrals - Jacobians

If an area A in the x, y plane maps into an area A' in the u, v plane then

$$\int_{A} f(x, y) \, \mathrm{d}x \, \mathrm{d}y = \int_{A'} f(u, v) J \, \mathrm{d}u \, \mathrm{d}v \quad \text{where} \quad J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

The Jacobian *J* is also written as $\frac{\partial(x, y)}{\partial(u, v)}$. The corresponding formula for volume integrals is

$$\int_{V} f(x, y, z) \, dx \, dy \, dz = \int_{V'} f(u, v, w) J \, du \, dv \, dw \quad \text{where now} \quad J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}$$

Fourier Series and Transforms

Fourier series

If y(x) is a function defined in the range $-\pi \le x \le \pi$ then

$$y(x) \approx c_0 + \sum_{m=1}^{M} c_m \cos mx + \sum_{m=1}^{M'} s_m \sin mx$$

where the coefficients are
$$c_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} y(x) \, dx$$

$$c_m = \frac{1}{\pi} \int_{-\pi}^{\pi} y(x) \cos mx \, dx$$

$$s_m = \frac{1}{\pi} \int_{-\pi}^{\pi} y(x) \sin mx \, dx$$

$$(m = 1, \dots, M')$$

with convergence to y(x) as $M, M' \to \infty$ for all points where y(x) is continuous.

Fourier series for other ranges

Variable *t*, range $0 \le t \le T$, (i.e., a periodic function of time with period *T*, frequency $\omega = 2\pi/T$).

 $y(t) \approx c_0 + \sum c_m \cos m\omega t + \sum s_m \sin m\omega t$

where

$$c_0 = \frac{\omega}{2\pi} \int_0^T y(t) \, \mathrm{d}t, \quad c_m = \frac{\omega}{\pi} \int_0^T y(t) \cos m\omega t \, \mathrm{d}t, \quad s_m = \frac{\omega}{\pi} \int_0^T y(t) \sin m\omega t \, \mathrm{d}t.$$

Variable *x*, range $0 \le x \le L$,

$$y(x) \approx c_0 + \sum c_m \cos \frac{2m\pi x}{L} + \sum s_m \sin \frac{2m\pi x}{L}$$

where

$$c_0 = \frac{1}{L} \int_0^L y(x) \, \mathrm{d}x, \quad c_m = \frac{2}{L} \int_0^L y(x) \cos \frac{2m\pi x}{L} \, \mathrm{d}x, \quad s_m = \frac{2}{L} \int_0^L y(x) \sin \frac{2m\pi x}{L} \, \mathrm{d}x.$$

Fourier series for odd and even functions

If y(x) is an *odd* (anti-symmetric) function [i.e., y(-x) = -y(x)] defined in the range $-\pi \le x \le \pi$, then only sines are required in the Fourier series and $s_m = \frac{2}{\pi} \int_0^{\pi} y(x) \sin mx \, dx$. If, in addition, y(x) is symmetric about $x = \pi/2$, then the coefficients s_m are given by $s_m = 0$ (for m even), $s_m = \frac{4}{\pi} \int_0^{\pi/2} y(x) \sin mx \, dx$ (for m odd). If y(x) is an *even* (symmetric) function [i.e., y(-x) = y(x)] defined in the range $-\pi \le x \le \pi$, then only constant and cosine terms are required in the Fourier series and $c_0 = \frac{1}{\pi} \int_0^{\pi} y(x) \, dx$, $c_m = \frac{2}{\pi} \int_0^{\pi} y(x) \cos mx \, dx$. If, in addition, y(x) is anti-symmetric about $x = \frac{\pi}{2}$, then $c_0 = 0$ and the coefficients c_m are given by $c_m = 0$ (for m even), $c_m = \frac{4}{\pi} \int_0^{\pi/2} y(x) \cos mx \, dx$ (for m odd).

[These results also apply to Fourier series with more general ranges provided appropriate changes are made to the limits of integration.]

Complex form of Fourier series

If y(x) is a function defined in the range $-\pi \le x \le \pi$ then

$$y(x) \approx \sum_{-M}^{M} C_m e^{imx}, \quad C_m = \frac{1}{2\pi} \int_{-\pi}^{\pi} y(x) e^{-imx} dx$$

with *m* taking all integer values in the range $\pm M$. This approximation converges to y(x) as $M \to \infty$ under the same conditions as the real form.

For other ranges the formulae are:

Variable *t*, range $0 \le t \le T$, frequency $\omega = 2\pi/T$,

$$y(t) = \sum_{-\infty}^{\infty} C_m e^{im\omega t}, \quad C_m = \frac{\omega}{2\pi} \int_0^T y(t) e^{-im\omega t} dt.$$

Variable x', range $0 \le x' \le L$,

$$y(x') = \sum_{-\infty}^{\infty} C_m e^{i2m\pi x'/L}, \quad C_m = \frac{1}{L} \int_0^L y(x') e^{-i2m\pi x'/L} dx'.$$

Discrete Fourier series

If y(x) is a function defined in the range $-\pi \le x \le \pi$ which is sampled in the 2N equally spaced points $x_n = nx/N$ [n = -(N-1)...N], then

$$y(x_n) = c_0 + c_1 \cos x_n + c_2 \cos 2x_n + \dots + c_{N-1} \cos(N-1)x_n + c_N \cos Nx_n$$

 $+ s_1 \sin x_n + s_2 \sin 2x_n + \dots + s_{N-1} \sin(N-1)x_n + s_N \sin Nx_n$

where the coefficients are

$$c_{0} = \frac{1}{2N} \sum y(x_{n})$$

$$c_{m} = \frac{1}{N} \sum y(x_{n}) \cos mx_{n}$$

$$(m = 1, ..., N - 1)$$

$$c_{N} = \frac{1}{2N} \sum y(x_{n}) \cos Nx_{n}$$

$$s_{m} = \frac{1}{N} \sum y(x_{n}) \sin mx_{n}$$

$$(m = 1, ..., N - 1)$$

$$s_{N} = \frac{1}{2N} \sum y(x_{n}) \sin Nx_{n}$$

each summation being over the 2N sampling points x_n .

Fourier transforms

If y(x) is a function defined in the range $-\infty \le x \le \infty$ then the Fourier transform $\hat{y}(\omega)$ is defined by the equations $y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{y}(\omega) e^{i\omega t} d\omega, \qquad \hat{y}(\omega) = \int_{-\infty}^{\infty} y(t) e^{-i\omega t} dt.$

If ω is replaced by $2\pi f$, where f is the frequency, this relationship becomes

$$y(t) = \int_{-\infty}^{\infty} \widehat{y}(f) e^{i2\pi ft} df, \qquad \widehat{y}(f) = \int_{-\infty}^{\infty} y(t) e^{-i2\pi ft} dt$$

If y(t) is symmetric about t = 0 then

$$y(t) = \frac{1}{\pi} \int_0^\infty \widehat{y}(\omega) \cos \omega t \, d\omega, \qquad \widehat{y}(\omega) = 2 \int_0^\infty y(t) \cos \omega t \, dt.$$

If y(t) is anti-symmetric about t = 0 then

$$y(t) = \frac{1}{\pi} \int_0^\infty \widehat{y}(\omega) \sin \omega t \, d\omega, \qquad \widehat{y}(\omega) = 2 \int_0^\infty y(t) \sin \omega t \, dt.$$

Specific cases

Convolution theorem

If $z(t) = \int_{-\infty}^{\infty} x(\tau)y(t-\tau) d\tau = \int_{-\infty}^{\infty} x(t-\tau)y(\tau) d\tau \equiv x(t) * y(t)$ then $\hat{z}(\omega) = \hat{x}(\omega) \hat{y}(\omega)$. Conversely, $\hat{xy} = \hat{x} * \hat{y}$.

Laplace Transforms

Function $y(t)$ $(t > 0)$	Transform $\overline{y}(s)$	
$\delta(t)$	1	Delta function
$\theta(t)$	$\frac{1}{s}$	Unit step function
t ⁿ	$\frac{n!}{s^{n+1}}$	
$t^{1_{b}}$	$\frac{1}{2}\sqrt{rac{\pi}{s^3}}$	
$t^{-1_{2}}$	$\sqrt{\frac{\pi}{s}}$	
e ^{-at}	$\frac{1}{(s+a)}$	
sin wt	$\frac{\omega}{(s^2+\omega^2)}$	
$\cos \omega t$	$\frac{s}{(s^2+\omega^2)}$	
sinh <i>wt</i>	$\frac{\omega}{(s^2-\omega^2)}$	
$\cosh \omega t$	$\frac{s}{(s^2-\omega^2)}$	
$e^{-at}y(t)$	$\overline{y}(s+a)$	
$y(t-\tau) \ \theta(t-\tau)$	$\mathrm{e}^{-s au}\overline{y}(s)$	
ty(t)	$-\frac{\mathrm{d}\overline{y}}{\mathrm{d}s}$	
$\frac{\mathrm{d}y}{\mathrm{d}t}$	$s\overline{y}(s) - y(0)$	
$\frac{\mathrm{d}^n y}{\mathrm{d} t^n}$	$s^{n}\overline{y}(s) - s^{n-1}y(0) - s^{n-2}\left[\frac{\mathrm{d}y}{\mathrm{d}t}\right]_{0} \cdots - \left[\frac{\mathrm{d}^{n-1}y}{\mathrm{d}t^{n-1}}\right]_{0}$	
$\int_0^t y(\tau) \mathrm{d}\tau$	$rac{\overline{y}(s)}{s}$	
$\begin{cases} \int_0^t x(\tau) \ y(t-\tau) \ \mathrm{d}\tau \\ \int_0^t x(t-\tau) \ y(\tau) \ \mathrm{d}\tau \end{cases}$	$\overline{x}(s) \ \overline{y}(s)$	Convolution theor

If y(t) is a function defined for $t \ge 0$, the Laplace transform $\overline{y}(s)$ is defined by the equation

[Note that if y(t) = 0 for t < 0 then the Fourier transform of y(t) is $\hat{y}(\omega) = \overline{y}(i\omega)$.]

Numerical Analysis

Finding the zeros of equations

If the equation is y = f(x) and x_n is an approximation to the root then either

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$
(Newton)
or, $x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}f(x_n)$
(Linear interpolation)

are, in general, better approximations.

Numerical integration of differential equations

If
$$\frac{dy}{dx} = f(x, y)$$
 then
 $y_{n+1} = y_n + hf(x_n, y_n)$ where $h = x_{n+1} - x_n$ (Euler method)
Putting $y_{n+1}^* = y_n + hf(x_n, y_n)$ (improved Euler method)
then $y_{n+1} = y_n + \frac{h[f(x_n, y_n) + f(x_{n+1}, y_{n+1}^*)]}{2}$

Numerical evaluation of definite integrals

Trapezoidal rule

The interval of integration is divided into *n* equal sub-intervals, each of width *h*; then

$$\int_{a}^{b} f(x) dx \approx h \left[c \frac{1}{2} f(a) + f(x_1) + \dots + f(x_j) + \dots + \frac{1}{2} f(b) \right]$$

where $h = (b-a)/n$ and $x_j = a + jh$.

Simpson's rule

The interval of integration is divided into an even number (say 2*n*) of equal sub-intervals, each of width h = (b - a)/2n; then

$$\int_{a}^{b} f(x) \, \mathrm{d}x \approx \frac{h}{3} [f(a) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 2f(x_{2n-2}) + 4f(x_{2n-1}) + f(b)]$$

Gauss's integration formulae

These have the general form $\int_{-1}^{1} y(x) \, \mathrm{d}x \approx \sum_{1}^{n} c_i y(x_i)$

For n = 2: $x_i = \pm 0.5773$; $c_i = 1, 1$ (exact for any cubic). For n = 3: $x_i = -0.7746, 0.0, 0.7746$; $c_i = 0.555, 0.888, 0.555$ (exact for any quintic).