Candidates should refer to this 505 source document throughout the course and become familiar with it. Candidates will need to use a clean copy of this document for the 9205-505 exam and for the sample questions.

The online version of the full Mathematical handbook can be found at http://homepage.ntu.edu.tw/~wttsai/MathModel/Mathematical%20Formula%20Handbook.pdf

(Please note we have extracted formula which is relevant to this unit. The full online version is not required.)

Laplace Transforms

If y(t) is a function defined for $t \geq 0$, the Laplace transform $\overline{y}(s)$ is defined by the equation

$$\overline{y}(s) = \mathcal{L}\{y(t)\} = \int_0^\infty e^{-st} y(t) dt$$

Function $y(t)$ $(t > 0)$	Transform $\overline{y}(s)$	
$\delta(t)$	1	- Delta function
$\theta(t)$	$\frac{1}{s}$	Unit step function
t^n	$\frac{n!}{s^{n+1}}$	
$t^{\frac{1}{2}}$	$rac{1}{2}\sqrt{rac{\pi}{s^3}}$	
$t^{-1/2}$	$\sqrt{\frac{\pi}{s}}$	
e^{-at}	$\frac{1}{(s+a)}$	
$\sin \omega t$	$\frac{\omega}{(s^2+\omega^2)}$	
$\cos \omega t$	$\frac{s}{(s^2+\omega^2)}$	
$\sinh \omega t$	$\frac{\omega}{(s^2-\omega^2)}$	
$\cosh \omega t$	$\frac{s}{(s^2-\omega^2)}$	
$e^{-at}y(t)$	$\overline{y}(s+a)$	
$y(t-\tau) \; \theta(t-\tau)$	$\mathrm{e}^{-s au}\overline{y}(s)$	
ty(t)	$-\frac{\mathrm{d}\overline{y}}{\mathrm{d}s}$	
$\frac{\mathrm{d}y}{\mathrm{d}t}$	$s\overline{y}(s) - y(0)$	
$\frac{\mathrm{d}^n y}{\mathrm{d}t^n}$	$s^n \overline{y}(s) - s^{n-1} y(0) - s^{n-2} \left[\frac{\mathrm{d}y}{\mathrm{d}t} \right]_0 \cdots - \left[\frac{\mathrm{d}^{n-1}y}{\mathrm{d}t^{n-1}} \right]_0$	
$\int_0^t y(au) \ \mathrm{d} au$	$rac{\overline{y}(s)}{s}$	
$ \begin{cases} \int_0^t x(\tau) \ y(t-\tau) \ d\tau \\ \int_0^t x(t-\tau) \ y(\tau) \ d\tau \end{cases} $	$\overline{x}(s) \; \overline{y}(s)$	Convolution theorem

[Note that if y(t) = 0 for t < 0 then the Fourier transform of y(t) is $\hat{y}(\omega) = \overline{y}(i\omega)$.]