

9209-505 NOVEMBER 2015 Level 5 Advanced Technician Diploma in Electrical and Electronic Engineering Level 5 Advanced Technician Diploma in Mechanical Engineering Instrumentation and control systems

Tuesday 24 November 2015 09:30 – 12:30

Do not write your answers in this booklet as this will not be marked. All answers should be written in the space provided on the question paper.

SOURCE DOCUMENT

Please DO NOT return to City & Guilds. Destroy this document locally.

9209-505 24 November 2015

Laplace Transforms

If y(t) is a function defined for $t \geq 0$, the Laplace transform $\overline{y}(s)$ is defined by the equation

$$\overline{y}(s) = \mathcal{L}\{y(t)\} = \int_0^\infty e^{-st} y(t) dt$$

Function $y(t)$ $(t > 0)$	Transform $\overline{y}(s)$	-
$\delta(t)$	1	Delta function
$\theta(t)$	$\frac{1}{s}$	Unit step function
t^n	$\frac{n!}{s^{n+1}}$	
$t^{\frac{1}{2}}$	$rac{1}{2}\sqrt{rac{\pi}{s^3}}$	
$t^{-1/2}$	$\sqrt{rac{\pi}{s}}$	
e^{-at}	$\frac{1}{(s+a)}$	
$\sin \omega t$	$rac{\omega}{(s^2+\omega^2}$	
$\cos \omega t$	$\frac{s}{(s^2+\omega^2)}$	
$\sinh \omega t$	$\frac{\omega}{(s^2-\omega^2)}$	
$\cosh \omega t$	$\frac{s}{(s^2-\omega^2)}$	
$e^{-at}y(t)$	$\overline{y}(s+a)$	
$y(t- au)\; \theta(t- au)$	$\mathrm{e}^{-s au}\overline{y}(s)$	
ty(t)	$-rac{\mathrm{d}\overline{y}}{\mathrm{d}s}$	
$\frac{\mathrm{d}y}{\mathrm{d}t}$	$s\overline{y}(s)-y(0)$	
$\frac{\mathrm{d}^n y}{\mathrm{d}t^n}$	$s^n\overline{y}(s)-s^{n-1}y(0)-s^{n-2}\left[rac{\mathrm{d}y}{\mathrm{d}t} ight]_0\cdots-\left[rac{\mathrm{d}^{n-1}y}{\mathrm{d}t^{n-1}} ight]_0$	
$\int_0^t y(au) \ \mathrm{d} au$	$rac{\overline{y}(s)}{s}$	
$ \begin{cases} \int_0^t x(\tau) \ y(t-\tau) \ d\tau \\ \int_0^t x(t-\tau) \ y(\tau) \ d\tau \end{cases} $	$\overline{x}(s) \; \overline{y}(s)$	Convolution theorem

[Note that if y(t)=0 for t<0 then the Fourier transform of y(t) is $\widehat{y}(\omega)=\overline{y}(\mathrm{i}\omega)$.]

The online version of the full Mathematical handbook can be found at http://homepage.ntu.edu.tw/~wttsai/MathModel/Mathematical%20Formula%20Handbook.pdf