9209-513 NOVEMBER 2015

Level 5 Advanced Technician Diploma in Mechanical Engineering Advanced Engineering Mathematics

Monday 16 November 2015
09:30-12:30

Do not write your answers in this booklet as this will not be marked. All answers should be written in the space provided on the question paper.

SOURCE DOCUMENT

Please DO NOT return to City \& Guilds. Destroy this document locally.

Mathematical Formulae Sheet

Taylor series expansion of $\boldsymbol{f}(a+x)$:

$$
f(a+x)=f(a)+\frac{x}{1!} f^{(1)}(a)+\frac{x^{2}}{2!} f^{(2)}(a)+\frac{x^{3}}{3!} f^{(3)}(a)+\cdots
$$

where x is the displacement measured from the fixed point a where $f^{(n)}(a)=\mathrm{n}$ 'th derivative of $f(x)$ evaluated at $x=a$.

Maclaurin series expansion of $\boldsymbol{f}(x)$:

This has the same expansion as for the Taylor series but with a $=0$ thus,

$$
f(x)=f(0)+\frac{x}{1!} f^{(1)}(0)+\frac{x^{2}}{2!} f^{(2)}(0)+\frac{x^{3}}{3!} f^{(3)}(0)+\cdots
$$

Fourier series description of $\boldsymbol{f}(x)$:

(a) for functions with period 2π

$$
\begin{aligned}
& f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x, \text { where } \\
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x
\end{aligned}
$$

(b) for functions $f(t)$ with period T in seconds
i.e. frequency in hertz $f_{h}=\frac{1}{T}$ or angular frequency $\omega=\frac{2 \pi}{T}$

$$
\begin{aligned}
& f(t)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n \omega t+b_{n} \sin n \omega t, \text { where } \\
& a_{0}=\frac{2}{T} \int_{0}^{T} f(t) d t \\
& a_{n}=\frac{2}{T} \int_{0}^{T} f(t) \cos n \omega t d t \\
& b_{n}=\frac{2}{T} \int_{0}^{T} f(t) \sin n \omega t d t
\end{aligned}
$$

Trapezoidal Rule using \boldsymbol{n} subintervals of the interval $[a, b]$ each of width h :
$\int_{a}^{b} f(x) d x \approx \frac{h}{2}\left[f(a)+f(b)+2 \sum_{k=1}^{n-1} f(a+k h)\right]$
Simpson's Rule with even number (n) of subintervals for $[a, b]$, each of width h :
$\int_{a}^{b} f(x) d x \approx \frac{h}{3}\left[f(a)+f(b)+2 \sum_{r=1}^{n-1} f(a+2 r h)+4 \sum_{r=1}^{n} f(a+\{2 r-1\} h)\right]$
Euler numerical method for the solution of $\frac{d y}{d x}=f(x, y)$ using a step size h :
$y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)$
Improved Euler numerical method:
$y_{n+1}^{0}=y_{n}+h f\left(x_{n}, y_{n}\right)$ then
$y_{n+1}=y_{n}+\frac{h}{2}\left[f\left(x_{n}, y_{n}\right)+f^{0}\left(x_{n+1}, y_{n+1}^{0}\right)\right]$

