

9209-513 NOVEMBER 2015 Level 5 Advanced Technician Diploma in Mechanical Engineering

Advanced Engineering Mathematics

Monday 16 November 2015 09:30 - 12:30

Do not write your answers in this booklet as this will not be marked. All answers should be written in the space provided on the question paper.

SOURCE DOCUMENT Please DO NOT return to City & Guilds. Destroy this document locally.

Short Table of Laplace Transforms

f(t)	$F(s) = \int_0^\infty f(t) e^{-st} dt$
$af_1(t) + bf_2(t)$	$aF_1(s) + bF_2(s)$
$\frac{d}{dt}f(t)$	sF(s)-f(0)
$\frac{d^2}{dt^2}f(t)$	$s^2F(s) - sf(0) - \frac{df(t)}{dt}(0)$
Initial value: $f(t), t \to 0$	$sF(s), s \to \infty$
Final value: $f(t), t \to \infty$	$sF(s), s \to 0$
Unit step: $H(t)$	$\frac{1}{s}$
Constant: c	$\frac{c}{s}$
t	$\frac{1}{s^2}$
$\frac{1}{2}t^2$	$\frac{1}{s^3}$
$e^{-\alpha t}$	$\frac{1}{s+\alpha}$
$te^{-\alpha t}$	$\frac{1}{(s+\alpha)^2}$
sin <i>wt</i>	$\frac{\omega}{s^2+\omega^2}$
t sin ωt	$\frac{2\omega s}{(s^2+\omega^2)^2}$
$e^{-\alpha t}\sin\omega t$	$\frac{\omega}{(s+\alpha)^2+\omega^2}$
$\cos \omega t$	$\frac{s}{s^2+\omega^2}$
t cos ωt	$\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$
$e^{-\alpha t}\cos\omega t$	$\frac{s+\alpha}{(s+\alpha)^2+\omega^2}$