Level 2 Diploma in Process Technology (0610-20/21/22)

August 2017 Version 2.4

Qualification at a glance

Subject area	Process Technology
City & Guilds number	0610-20, 0610-21, 0610-22
Registration and certification dates	For last dates see the online catalogue/Walled Garden
Age group approved	16-18, 19+
Entry requirements	n/a
Assessment and grading	Pass/Fail
Fast track	Available
Support materials	Centre handbook

Title and level	GLH	TQT	City & Guilds number	Accreditation number
Level 2 Diploma in Process Technology (Chemical Processes)	400	540	0610-20	600/0820/9
Level 2 Diploma in Process Technology (Petroleum Operations)	400	540	0610-21	600/0820/9
Level 2 Diploma in Process Technology (Metal Production)	400	540	0610-22	600/0820/9

Version and date	Change detail	Section
2.4 August 2017	Added TQT details	Qualification at a glance, Structure
	Deleted QCF	Throughout
1.1 March 2012	QAN	Qualification at a glance
2.0 Sept 2012	Amend RoC	Structure
2.1 July 2016	Tutor guidance on use of calculators in online tests	Assessment
2.2 March 2017	Centre devised guidance	Assessment

Contents

1	Introduction	4
2	Centre requirements	8
	Candidate entry requirements	9
3	Delivering the qualification	10
4	Assessment	12
	Test specifications	13
Units		15
Unit 201	Fundamentals of process science	16
Unit 202	Calculations in process industries	20
Unit 203	Health, safety and environmental issues in proce industries	ess 22
Unit 204	Fundamentals of Communications and informati technology in process industries	on 25
Unit 205	Fundamentals of process chemistry	27
Unit 206	Process plant and process plant services in proc industries	ess 31
Unit 207	Processing solids in process industries	36
Unit 208	Processing fluids in process industries	40
Unit 209	Principles of laboratory analysis	44
Unit 210	Fundamentals of Special processes in process in dustries	48
Unit 211	Instrumentation, measurement and control in process industries	50
Unit 212	Fundamentals of Processing metals in process industries	56
Unit 215	Fundamentals of Primary working in the steel industry	60
Unit 219	Fundamentals of Metallurgy of iron and steel production	63
Unit 222	Non-ferrous metals and alloys	66
Unit 223	Chemistry for petroleum operations	70
Unit 224	Fundamentals of petroleum technology	73
Appendix 1	Relationships to other qualifications	76
Appendix 2	Sources of general information	77

1 Introduction

This qualification is aimed at candidates who

- are following Modern Apprenticeship programmes
- require evidence towards the underpinning knowledge of an N/SVQ
- seeking a technical certificate
- wish for career progression within the Process Technology industry

Without evidence of formal qualifications, candidates must be able to demonstrate prior adequate knowledge and experience necessary to complete the course.

This qualification is designed to contribute towards the knowledge and understanding for the N/SVQs in Process Technology Level 2, while containing additional skills and knowledge which go beyond the scope of the National Occupational Standards.

These awards can be used as a technical certificate within a modern apprenticeship scheme.

Structure

To achieve the **Level 2 Diploma in Process Technology (Chemical Processes)**, learners must obtain a minimum total of 60 credits. This is made up of 24 credits from the Core Mandatory Group, plus 24 credits from the Pathway Mandatory Group, plus a minimum of 12 credits from the Optional Group.

Unit accreditation number	City & Guilds unit	Unit title	Credit value
Core Mandatory			
	201	Fundamentals of process science	6
	202	Calculations in process industries	6
	203	Health, safety and environmental issues in process industries	6
	204	Fundamentals of communications and information technology in process industries	6

Pathway Mandatory			
	205	Fundamentals of process chemistry	12
	206	Process plant and process plant services in process industries	12

Optional			
	207	Processing solids in process industries	6
	208	Processing fluids in process industries	6
	209	Principles of laboratory analysis	6
	210	Fundamentals of special processes in process industries	6
	211	Instrumentation, measurement and control in process industries	6

To achieve the **Level 2 Diploma in Process Technology (Petroleum Operations)** learners must obtain a minimum total of 60 credits. This is made up of 24 credits from the Core Mandatory Group, plus 24 credits from the Pathway Mandatory Group, plus a minimum of 12 credits from the Optional Group.

Unit accreditation number	City & Guilds unit	Unit title	Credit value
Core Mandatory			
	201	Fundamentals of process science	6
	202	Calculations in process industries	6
	203	Health, safety and environmental issues in process industries	6
	204	Fundamentals of communications and information technology in process industries	6
Pathway Mandatory			
	206	Process plant and process plant services in process industries	12
	223	Chemistry for Petroleum Operations	6
	224	Fundamentals of petroleum technology	

Optional			
	208	Processing fluids in process industries	6
	209	Principles of laboratory analysis	6
	210	Fundamentals of special processes in process industries	6
	211	Instrumentation, measurement and control in process industries	6

To achieve the Level 2 Diploma in Process Technology (Metal

Production) learners must obtain a minimum total of 54 credits. This is made up of 24 credits from the Core Mandatory Group, plus 6 credits from the Pathway Mandatory Group, plus a minimum of 24 credits from the Optional Group.

Unit accreditation number	City & Guilds unit	Unit title	Credit value
Core Mandatory			
	201	Fundamentals of process science	6
	202	Calculations in process industries	6
	203	Health, safety and environmental issues in process industries	6
	204	Fundamentals of communications and information technology in process industries	6
Pathway Mandatory			
	212	Fundamentals of processing metals in process industries	6
Optional			
	206	Process plant and process plant services in process industries	12
	211	Instrumentation, measurement and control in process industries	6
	215	Fundamentals of primary working in the steel industry	6
	219	Fundamentals of metallurgy of iron and steel production	6
	222	Non-ferrous metal and alloys	6

Total Qualification Time

Total Qualification Time (TQT) is the total amount of time, in hours, expected to be spent by a Learner to achieve a qualification. It includes both guided learning hours (which are listed separately) and hours spent in preparation, study and assessment.

Title and level	GLH	тот
Level 2 Diploma in Process Technology	400	540

2 Centre requirements

To offer this qualification, new centres will need to gain both centre and qualification approval. Please refer to the *Centre guide* and *Providing City* & *Guilds Qualifications* for further information.

Centre staff should familiarise themselves with the structure, content and assessment requirements of the qualification before designing a course programme.

Resource requirements

Centre staffing

Staff delivering this qualification must be able to demonstrate that they meet the following occupational expertise requirements. They must:

- be occupationally competent or technically knowledgeable in the areas for which they are delivering training and/or have experience of providing training. This knowledge must be to the same level as the training being delivered
- have creditable experience of providing training.

Centre staff may undertake more than one role, eg tutor and assessor or internal verifier, but cannot internally verify their own assessments.

Assessors and internal verifiers

Staff assessing or verifying this qualification must be able to demonstrate that they meet the following occupational expertise requirements. They must:

- Have verifiable and relevant current industry experience and competence in the specific area they will be assessing, at or above the level being assessed and evidence of the quality of the occupational experience to ensure the credibility of the assessment judgements. Assessors' and verifiers' experience and competence could be evidenced by:
 - curriculum vitae and references
 - possession of a relevant health and safety qualification
 - appropriate membership of a relevant professional institution
 - continuing professional development (CPD).
- only assess or verify in their acknowledged area of professional competence
- have appropriate knowledge and understanding of the current National Occupational Standards
- actively engage in relevant professional development
- meet the required criteria in the qualification's regulators current regulation documentation.

Centre staff should hold, or be working towards, the relevant Assessor/Verifier (A/V) units for their role in delivering, assessing and verifying this qualification.

Continuing professional development (CPD)

Centres must support their staff to ensure that they have current knowledge of the occupational area, that delivery, mentoring, training, assessment and verification is in line with best practice, and that it takes account of any national or legislative developments.

Candidate entry requirements

City & Guilds does not set entry requirements for this qualification. However, centres must ensure that candidates have the potential and opportunity to gain the qualification successfully.

3 Delivering the qualification

Initial assessment and induction

An initial assessment of each candidate should be made before the start of their programme to identify:

- if the candidate has any specific training needs,
- support and guidance they may need when working towards their qualification].
- any units they have already completed, or credit they have accumulated which is relevant to the qualification.
- the appropriate type and level of qualification.

We recommend that centres provide an induction programme so the candidate fully understands the requirements of the qualification, their responsibilities as a candidate, and the responsibilities of the centre. This information can be recorded on a learning contract.

Support materials

The following resources are available for this qualification:

Description	How to access
Promotional materials – will be available soon	www.cityandguilds.com

Recording documents

Candidates and centres may decide to use a paper-based or electronic method of recording evidence.

City & Guilds endorses several ePortfolio systems. Further details are available at: **www.cityandguilds.com/eportfolios**.

City & Guilds has developed a set of generic *Recording forms* including examples of completed forms, for new and existing centres to use as appropriate.

Recording forms are available on the City & Guilds website.

Although new centres are expected to use these forms, centres may devise or customise alternative forms, which must be approved for use by the external verifier, before being used by candidates and assessors at the centre.

Amendable (MS Word) versions of the forms are available on the City & Guilds website.

4 Assessment

City & Guilds unit	Unit title	Assessment Method
201	Fundamentals of process science	Online
202	Calculations in process industries	Online
203	Health, safety and environmental issues in process industries	Short-Answer
204	Fundamentals of Communications and information technology in process industries	Assignment
205	Fundamentals of process chemistry	Multiple Choice
206	Process plant and process plant services in process industries	Multiple Choice
207	Processing solids in process industries	Multiple Choice
208	Processing fluids in process industries	Multiple Choice
209	Principles of laboratory analysis	Centre Devised
210	Fundamentals of Special processes in process industries	Centre Devised
211	Instrumentation, measurement and control in process industries	Multiple Choice
212	Fundamentals of Processing metals in process industries	Multiple Choice
215	Fundamentals of Primary working in the steel industry	Centre Devised
219	Fundamentals of Metallurgy of iron and steel production	Centre Devised
222	Non-ferrous metals and alloys	Centre Devised
223	Chemistry for petroleum operations	Multiple Choice
224	Fundamentals of petroleum technology	Multiple Choice

Test specifications

The way the knowledge is covered by each test is laid out in the table below:

Test 1:	Unit 201 Fundamentals of process science
Duration:	75 minutes

Unit	Outcome	Number of questions	%
201	1 know the composition and properties of matter	14	27
	2 understand the concepts of force, energy, work and power	18	35
	3 understand the thermal properties of solids, liquids and gases	13	25
	4 know the nature and application of electricity	7	13
	Total	52	100

Unit 202 Calculations in process industries Test 2: Durati

i	on	1	30	m	inu	tes	

Unit	Outcome	Number of questions	%
202	1 know how to perform simple arithmetic operations	6	27
	2 know how to solve problems involving simple formulae	7	32
	3 know how to interpret graphical data	9	41
	Total	22	100

Tutor Guidance

Please note that the use of a non-programmable calculator is permitted for the completion of the online tests 201 and 202.

Centre set and marked assessments

City & Guilds has provided separate guidance for writers of centre based assessments which should be read in conjunction with this document, entitled, 'GM1 - Developing centre devised **assessments** – guidance for centre based assessment writers'.

A set of generic recording forms is also provided as follows:

- Assessment tasks (AD1)
- Assessment grading criteria (AD2)
- Assessment sign off form (AD3)

- Evidence recording form (GF1)
- Assessment unit front and mark sheet (GF2)
- Assessment task front sheet (GF3)
- Assessment unit mark sheet (GF4)
- Assessment feedback and action plan form (GF5)
- Qualification assessment tracking form (GF6)
- Group assessment tracking form (GF7)

A full explanation of the use of these forms can be found in the centre devised assessment writing guidance. All of this material is available to download from the City & Guilds website. at http://www.cityandguilds.com/delivering-ourqualifications/centre-development/quality-assurance/qualityassurance-documents

Units

Availability of units

Structure of units

These units each have the following:

- City & Guilds reference number
- unit accreditation number
- title
- level
- credit value
- unit aim
- relationship to NOS, other qualifications and frameworks
- endorsement by a sector or other appropriate body
- information on assessment
- learning outcomes which are comprised of a number of assessment criteria
- notes for guidance.

Unit 201 Fundamentals of process science

Unit reference:	M/602/5943
Level:	2
Credit value:	6
GLH:	It is recommended that 40 hours should be allocated for this unit, although patterns of delivery are likely to vary.
Assessment requirements	Online
Aim	This unit provides the essential science required for an understanding of the technology used in the process industries.

Lea	rning outcome The learner will:		
1 1	ning outcome including and properties of matter		
I. I	The composition and properties of matter		
Ass	essment criteria		
The	learner can:		
1.1	describe the three states of matter		
1.2	describe the nature of changes in the states of matter		
1.3	describe the importance of fixed points, melting point and boiling point		
1.4	state the effects of impurities upon the fixed points of substances		
1.5	state the effects of changes in pressure upon the fixed points of substances		
1.6	describe the terms atom, element, molecule, compound and mixture		
1.7	identify the chemical symbols of common elements		
	• aluminium		
	• argon		
	• calcium		
	• carbon		
	• chlorine		
	helium		
	 hydrogen 		
	• iodine		
	• iron		
	• lead		
	• mercury		
	 nitrogen 		

oxygen

- potassium
- silicon
- sodium
- sulphur
- tin
- uranium
- zinc
- 1.8 describe the structure of atoms
 - electrons
 - protons
 - neutrons
- 1.9 state atomic number and relative atomic mass of atoms in relation to atomic structures
- 1.10 define the terms density and relative density
- 1.11 perform density and relative density calculations
- 1.12 define the terms viscosity and viscosity index
- 1.13 state the SI unit of viscosity
- 1.14 state the importance of viscosity in relation to the processing and transportation of fluids in industry

	-			
Lear	ning outcome	The learner will:		
2. U	nderstand the co	ncepts of force, energy, work and power		
Asse	ssment criteria			
The l	earner can:			
2.1	identify common	forms of energy:		
	• heat			
	 electrical 			
	 chemical 			
	 nuclear 			
	• gravitational			
	 potential 			
2.2	• kinetic	enconvetion of encours		
2.2	2 state the law of conservation of energy			
2.3	2.5 Identity types of energy conversion			
2.4 2.5	2.4 UESCHUE EHERGY AS THE CAPACITY FOR UVIRING WORK			
2.5	2.5 realculate the work done in moving mass through distances			
2.0	calculate the king	k done in moving mass through distances		
2./ วo	calculate the kine	ential energy of mass moving at a constant velocity		
2.0	calculate the pot	nc involving onergies		
2.9	define nower as	energy per unit time		
2.10	calculate the nov	ver generated in performing work		
2.11	define the relatio	unshin between absolute, gauge and atmospheric		
2.12	pressure	and all of the solute, gauge and all opplete		
2.13	calculate pressur	re due to singular liquid columns		
2.14	solve problems in	nvolving volumetric flow rates		
2.15	describe the imp	ortance of laminar and turbulent flows		

- 2.16 use SI unit and quantity symbols
 - mass
 - force

- energy
- power
- velocity
- acceleration
- pressure
- volumetric flowrate
- 2.17 use alternative metric units
 - litres
 - bars
 - tonnes
- 2.18 apply the multiples and sub-multiples of units
 - micro
 - milli
 - centi
 - deci
 - kilo
 - mega.

Learning outcome The learner will:

3. Understand the thermal properties of solids, liquids and gases

Assessment criteria

The learner can:

- 3.1 identify the differences between heat and temperature
- 3.2 define the terms sensible heat and latent heat
- 3.3 calculate SI units
 - heat
 - temperature
 - specific latent heat
 - specific heat capacity
- 3.4 convert Celsius and absolute (Kelvin) temperatures
- 3.5 calculate the heat transferred to or from bodies
 - Q = mass x specific heat capacity x temperature change
- 3.6 use coefficient of expansions to solve problems relating to linear expansions of materials
- 3.7 describe how heat energy is transferred
 - conduction
 - convection
 - radiation.
- 3.8 identify the differences between heat conductors and insulators
- 3.9 state the effects of surface colour on the reflection and absorption of heat
- 3.10 perform calculations using Boyle's law, Charles' law and the combined gas equation
- 3.11 define changes of state
 - evaporation
 - condensation
 - sublimation.
- 3.12 define the terms humidity, relative humidity and dew point
- 3.13 state the temperature dependence of humidity, relative humidity and dew point

Learning outcome The learner will: 4. Know the nature and application of electricity Assessment criteria The learner can: 4.1 describe electrical conductance in terms of the flow of electrons in solids • conductor insulator • 4.2 describe applications of the conversion of electrical energy electromagnetic • electrochemical • • thermoelectric • piezoelectric • photoelectric • electrostatic 4.3 apply the equations V = IR, P = VI and Q = It using the correct SI quantity and unit symbols 4.4 calculate the total resistance of two resistors in series or parallel 4.5 identify differences between direct and alternating current 4.6 state the purpose of rectifiers, transformers and fuses describe precautions necessary to minimise hazards associated 4.7 with static electricity

Unit 202 Calculations in process industries

Unit reference:	T/602/5961
Level:	2
Credit value:	6
GLH:	It is recommended that 40 hours should be allocated for this unit, although patterns of delivery are likely to vary.
Assessment requirements	Online
Aim	This core unit is designed to give candidates the arithmetic skills required to complete the Level 2 progression award in Process Plant and provide the basis for progression to the Level 3 award

Lear	Learning outcome The learner will:				
1. k	1. Know how to perform simple arithmetic operations				
Ass	essment criteria				
The	learner can:				
1.1	identify the num	erator and denominator of fractions			
1.2	convert betweer	ractions and decimals			
1.3	calculate the ave	rages of sets of numbers			
1.4	use different typ	es of numbers to perform calculations			
	• percentages				
	• ratio				
	proportion				
	 fractions 				
	decimals				
1.5	evaluate express	ions using calculators			
	 addition 				
	subtraction				
	multiplication				
	division				
	• squares				
1.	 square roots 				
1.6	identity the orde	r of arithmetic operations			

Leai	rning outcome	The learner will:	
2. k	Know how to solve	e problems involving simple formulae	
Ass	essment criteria		
The	learner can:		
2.1	use algebraic syr	mbols to represent numeric quantities	
2.2	perform equatio	ns from instructions	
2.3	evaluate formula	ae from data	
2.4	2.4 perform transposition of formulae		
2.5 perform transposition of formulae involving brackets			
2.6	2.6 use formulae for areas to solve problems		
	 rectangles 		
	• triangles		
	 circles 		
	 compound 		
2.7	use formulae for	volumes to solve problems	
	 cuboids 		

- cylinders spheres .
- •
- compound •

Lear	ning outcome	The learner will:	
3. K	ínow how to inter	pret graphical data	
Asse	essment criteria		
The l	earner can:		
3.1	1 calculate relative frequency percentages.		
3.2	classify data on pie charts.		
3.3	construct tally charts from raw data.		
3.4	classify data into class intervals.		
3.5	use histograms to represent data		
3.6	construct linear graphs from data.		
3.7	estimate gradients of straight-line graphs.		
3.8	illustrate best-fit straight lines from experimental data		

3.9 apply the operations of interpolation and extrapolation to data

Unit 203 Health, safety and environmental issues in process industries

Unit reference:	J/602/5964
Level:	2
Credit value:	6
GLH:	It is recommended that 40 hours should be allocated for this unit, although patterns of delivery are likely to vary.
Assessment requirements	Short Answer
Aim	High standards of health, safety and environmental care are essential to the success of an organisation. Both individuals (employees) and organisations (employers) benefit from effective and efficient health, safety and environmental management systems. This unit will provide candidates with an awareness of health, safety and environmental issues and some of the important legislation relating to them. The unit also covers the need for effective communication and accurate record keeping.

Leai	rning outcome	The learner will:	
1. k i	Know the importar ssues in the workp	nce of personal health, safety and environmental place and the regulations relating to these matters	
Ass	essment criteria		
The	learner can:		
1.1	1.1 state the prime objectives of the Health and Safety at Work Act 1974.		
1.2	1.2 list general employee duties under the Health and Safety at Work Act 1974.		
1.3	1.3 identify workplace regulations		
	• environment	al protection	
	• use of maching	nery	
	 hazardous su 	bstances	
	 electrical equ 	lipment	
	 manual handling 		
	 portable tools and equipment 		
	lifting equipn	nent	

• working at height.

- 1.4 identify organisational procedures applicable to workplace activities.
- 1.5 state responsibilities in monitoring and maintaining health and safety for individuals
- 1.6 describe the importance of accident prevention in the workplace.
- 1.7 describe active and pro-active health and safety management systems in the workplace.

Lear	ning outcome	The learner will:
2. K	now on the factor f health and safet	rs that contribute to the maintenance of standards
Asse	essment criteria	
The l	earner can:	
2.1	define the terms	hazard and risk
2.2	describe importa within industrial	nce of hazards and risks in reducing accidents organisations
2.3	state where haza	rds might exist in industrial organisations
2.4	state how to asso	ess hazards in industrial organisations
2.5	state the hierarc	ny of control measures to minimise risks.
2.6	describe how to	conduct risk assessments
2.7	state the require materials.	ments for the use and storage of equipment and
2.8	state what action	ns individuals should take in emergency situations
	• fire	
	• toxic gas rele	ase
	• environment	ally harmful spillage
	accident invo	lving fellow employees.
2.9	describe what is	meant by Permit To Work systems
2.10	outline why the r Work systems sh	egulations and procedures controlling Permit to ould not be breached.
2.11	state the differer materials and wa	ices between hazardous and non-hazardous ste.
2.12	identify types of	Personal Protective Equipment (PPE)
2.13	describe manual	handling techniques.
2.14	describe the nec working relations	essity of establishing and maintaining good ships with others
2.15	describe how to	deal with incidents affecting the health of others
2.16	• not to exceed describe the type	ding ones own limitations es of fire fighting equipment in the workplace
	 fire hose 	
	 portable fire 	extinguishers
	o carbor	dioxide (CO2)
	o foam	
	o water	
	o drv po	wder
	 fire blankets 	
	 sprinkler syst 	ems.
2.17	describe the use	s and limitations of fire fighting equipment

Lear	ning outcome	The learner will:	
3. K	now the importar egard to health, s	nce of accurate communications and records with after and welfare in the workplace	
Asse	essment criteria		
The l	earner can:		
3.1	state how to com	nmunicate clearly and effectively	
3.2	3.2 distinguish the degrees of urgency.		
3.3	state the importa	ance of accuracy when dealing with messages.	
3.4	describe the imp health and safety	ortance of accuracy and legibility in relation to records.	
3.5	describe the imp	ortance of accident reporting systems.	
3.6	state the importa	ance of respecting and maintaining confidentiality.	
3.7	state the purpos	e of health and safety records and procedures.	

Unit 204

Fundamentals of Communications and information technology in process industries

Unit reference:	D/602/5971
Level:	2
Credit value:	6
GLH:	It is recommended that 40 hours should be allocated for this unit, although patterns of delivery are likely to vary.
Assessment requirements	Assignment
Aim	This core unit is designed to develop candidates' workplace communication skills and enable them to utilise information technology to develop and produce technical documentation. The unit also provides the basis for progression to the Level 3 award in Communications and Information Technology.

Lear	Learning outcome The learner will:				
1. E	1. Be able to interpret and summarise information from technical documentation				
Ass	essment criteria				
The	learner can:				
1.1	communicate teo	chnically relevant topics.			
1.2	identify key point	ts in documents			
1.3	identify methods	of communicating written information			
	• memorandur	n			
	 email 				
	 letter 				
	technical rep	ort.			
1.4	interpret informa	ation from documents			
	• charts				
	• graphs				
1 5	• diagrams.	doqumonto			
1.5	create accurate (locuments			
	• spelling				
	• punctuation				
16	 grammar use language in a 	documents that are appropriate to their context			

and intended audience.

- 1.7 create logically structured documents
- 1.8 create documents maintaining relevance of information.

Learning outcome The learner will:

2. Be able to use standard features of a word-processing package to enhance the appearance and legibility of technical documentation

Assessment criteria

The learner can:

- 2.1 select fonts and font sizes
 - body text
 - headings
 - sub-headings
- 2.2 use tabulation and justification to align texts.
- 2.3 use bullet points and numbering.
- 2.4 use text boxes and tables to position information.
- 2.5 apply software spelling and grammar checks to texts.

Learning outcome	The learner will:
3. Be able to record, spreadsheet packa	organise and develop information using a age
Assessment criteria	
The learner can:	
3.1 apply row and co	olumn headings.
3.2 select formats of	cells of spreadsheets.
3.3 apply cell protec	tion.
3.4 use copy and pas	ste functions for cells.
3.5 use link cells fund	ctions between worksheets.
3.6 use the mathema	atical operators in formulae.
• +	
• -	
• X	
• ÷	
3.7 illustrate formula	le using cell references.
3.8 use add (or 'sum	') function for numbers in cells.
3.9 use graphical for	ms to represent data sets
 pie chart 	
 line graph 	
 bar chart. 	

Unit 205 Fundamentals of process chemistry

Unit reference:	H/602/5972
Level:	2
Credit value:	12
GLH:	It is recommended that 80 hours should be allocated for this unit, although patterns of delivery are likely to vary.
Assessment requirements	Multiple Choice
Aim	This unit provides the essential knowledge required for an understanding of the chemical principles involved in manufacturing processes carried out in the chemical industries.

Lear	ning outcome	The learner will:
1. K s	now the structure ymbols that repre	e of atoms, elements, compounds and chemical sent them
Asse	essment criteria	
The l	earner can:	
1.1	identify difference and charge.	es between particles in relation to relative mass
	• electrons	
	 protons 	
	neutrons	
1.2	describe structur	res of atoms in terms of sub-atomic particles.
1.3	number.	es between relative atomic mass and atomic
1.4	identify the chem	nical symbols for common elements.
1.5	identify the differ mixtures.	rences between elements, compounds and
1.6	define the term is	on.
1.7	identify difference electron transfer	es between ionic and covalent bonding in terms of and electron sharing.
1.8	identify the differ bonded compou	ences between properties of ionic and covalently nds.
1.9	define the term v	alency.
1.10	apply the concep	ts of valency to chemical formulae
1.11	identify the form	ulae of molecules and ions.
1.12	identify chemical	formulae of compounds
	 oxides 	

- hydroxides •
- sulphates •
- chlorides •
- nitrates
- carbonates
- sulphides
- hydrogen carbonates.1.13 define the term formula (molar) mass
- 1.14 calculate formula masses.

Lea	rning outcome	The learner will:
2.	Know fundamenta	scientific laws to the construction and use of
	balanced chemical	equations
Ass	essment criteria	
The	learner can:	
2.1	identify the diffe	ences between chemical and physical changes.
2.2	define the term o	hemical reaction.
2.3	describe the law proportion.	of conservation of matter and the law of definite
2.4	define the term s	toichiometric quantity.
2.5	construct balanc reactions.	ed chemical equations to represent chemical
2.6	calculate the ma chemical equation	sses of reactants and products from balanced ns.
2.7	describe the imp	ortance of Avogadro's law.
2.8	identify difference reactions.	es between exothermic and endothermic
2.9	state the function	n of catalysts.
2.10) identify the diffe	ences between chemical compounds
	• acid	
	 alkali 	
	• base	
	• salt	
2.11	identify chemica	formulae of common chemical compounds
	• acid	
	 alkali 	
	• base	
	• salt	
2.12	2 construct balanc	ed chemical equations for reactions involving acids
	 metals 	
	 alkalis 	
	 bases 	
	 carbonates 	
	hydrogen car	bonates.
2.13	3 describe the rela	tionship between pH and acidity/alkalinity.

- 2.14 define the terms neutralisation and neutral solution.
- 2.15 state the function of common indicators.

Lear	ning outcome The learner will:
3. U	Inderstand solutions, solubility and solubility curves
Asse	essment criteria
The l	earner can:
3.1	define terms associated with solutions and solubility
	• solute
	• solvent
	solution
	• suspension
	• precipitate
	unsaturated solution
	saturated solution
	supersaturated solution.
3.2	define the term solubility and the units used.
3.3	identify factors which affect rates at which solute dissolves in solvents
	particle size
	temperature of solvent
	degree of agitation.
3.4	explain how solubility of solutes varies with temperature of solvents
3.5	interpret solubility curves
	unsaturated solutions
	saturated solutions
. .	supersaturated solutions.
3.6	calculate concentration of solutions
	molar solutions
	moles per litre
	• as a percentage of the solvent (w/w)
2 7	• as a percentage of the solution (W/V).
Э./ Э о	available conditions under which crystallication accurs
0.C	identify substances that source temperaty and normanent bardness
3.7	in water.
3.10	define differences between efflorescence, deliquescence and anhydrous.

Learning outcome The learner will:

4. Know the application and importance of electrochemical principles

Assessment criteria

The learner can:

- 4.1 describe electrochemical series (reactivity series).
- 4.2 define the terms anode, cathode and electrolyte.
- 4.3 describe how simple cells can be constructed.
- 4.4 identify primary and secondary cells.
- 4.5 define the terms electrolysis, anion and cation.
- 4.6 describe common uses of electrolysis
 - molten sodium chloride
 - brine
 - acidified water.

Lear	ning outcome The learner will:		
5. K	now the structure, classification and properties of carbon		
С	ompounds		
Asse	essment criteria		
The l	earner can:		
5.1	identify the differences between inorganic and organic chemicals.		
5.2	describe the structure of hydrocarbon compounds		
	straight chain		
	branched chain		
	• ring compounds.		
5.3	define the term homologous series.		
5.4	state the general formulae for alkanes, akenes and alkynes.		
5.5	hydrocarbons		
56	identify the differences between molecular and structural formulae		
5.0	first six alkanos		
	 first three alkenes 		
	ethyne		
5.7	define the term alkyl group		
5.8	state common types of alkyl group		
5.9	define the term functional group.		
5.10	describe the classification of organic compounds in terms of their functional groups		
	alcohols		
	acids		
	• esters		
	halides		
	• amines.		
5.11	identify general formulae for functional groups.		
5.12	identify the differences between aliphatic and aromatic		
F 4 0	compounds.		
5.13	identity aromatic compounds		
	benzene constant la sussaine (talianes)		
	metnyi benzene (toillene)		
514	unreunyidenzene (xylene). identify systematic and common names for common organic		
5.14	compounds.		

Unit 206 Process plant and process plant services in process industries

Unit reference:	K/602/5973
Level:	2
Credit value:	12
GLH:	It is recommended that 80 hours should be allocated for this unit, although patterns of delivery are likely to vary.
Assessment requirements	Multiple Choice
Aim	This unit provides the essential knowledge required for an understanding of the production, distribution and use of essential plant services in the process industries.

Learning outcome The learner will:		
1. Know the constru	ction and operation of pipes and equipment	
Assessment criteria	l	
The learner can:		
1.1 identify materials to makes pipes		
1.2 state applications of materials		
 ferrous – carbon, alloy and stainless steels 		
 non-ferrous – copper, nickel, aluminium and their alloys 		
 non-metals – glass, plastics and rubber. 		
1.3 Identify materia	is used to protect pipework	
 external protection – painting, bituminous coatings 		
1.4 identify method	 Internal protection – rubber, cement, resin and metal linings. 1.4 identify methods of ioining pipes 	
 welding, brazing 		
 flanges and seals, unions and couplings. 		
1.5 identify commo	n pipe fittings	
 elbows 		
T-pieces		
• reducers.		
1.6 Identify BS symp	bols for pipework systems	
• water (all, co	ooling, drinking, hydro power, fire extinguisher)	
compressed air		
Stearn		

• North Sea gas

- oil (all, diesel fuel oil, lubrication oil)
- acids and alkalis.
- 1.7 state the principles of construction and operation of pumps and fans
 - persuasive centrifugal pumps
 - positive displacement reciprocating, diaphragm, rotary and gear pumps
 - other types mono, peristaltic, rotary and vacuum pumps
 - fans centrifugal and axial.
- 1.8 identify applications of pumps and fans.
- 1.9 identify advantages and disadvantages of pumps and fans
- 1.10 identify pumps and fans for appropriate duties.
- 1.11 describe principles of construction and operation of valves
 - gate, ball, plug, globe, butterfly and needle valves
 - pressure reducing, pressure relief and non-return valves.
- 1.12 identify applications of valve types.
- 1.13 identify advantages and disadvantages of valve types.
- 1.14 describe the precautions necessary to minimise the hazards associated with use of pumps and valves
 - static electricity earthing
 - cavitation
 - valves associated with positive displacement pumps
 - hazards due to high pressure bursting discs.

Lear	rning outcome	The learner will:	
2. 1	2. Know the construction, operating principles and uses of heat		
	exchange equipme		
Ass	essment criteria		
The	learner can:		
2.1	identify uses of h	eat exchange equipment	
	 heating and d 	cooling	
	 condensation 	n and boiling.	
2.2	describe constru	ction, operation and characteristics of heat	
	exchangers		
	• concentric pi	ре	
	 jacketed vess 	sels	
	 heating coils 		
	• single and m	ulti-pass shell and tube types	
	• plate and frai	me types	
	• air fin types.		
2.3	describe how m	echanical and thermal efficiencies of heat	
	exchangers are r	naintained	
	 expansion joi 	ints and bellows	
	 baffles 		
	• fluid turbuler	nce	
	 insulation 		
2.4	state common he	eat exchange media (thermal fluids)	
	• water		
	 steam 		

• air

- oils •
- flue gases.
 2.5 describe precautions necessary to minimise hazards associated with heat exchange equipment
 - hot surfaces
 - thermal fluid leaks •
 - corrosion •
 - blocked tubes •
 - toxic and flammable hazards. •

Lea	rning outcome	The learner will:
3. I	Know impurities in	raw water and how they can be removed
Ass	essment criteria	
The	learner can:	
3.1	identify sources	of water available to industry
	 reservoirs, ri wells sea water. 	vers
3.2	state impurities f	ound in industrial water
3.3	 water hardne dissolved gas un-dissolved bacteria, alga identify the need 	ess salts ses solids ae. I for water treatment
3.4	 to prevent so equipment to produce p describe method 	ale formation in boilers and heat exchange otable and pathogen-free water. Is of water treatment
3.5	 de-ionisation de-aeration filtration pH control chemical addition identify hazards 	litions associated with water treatment and supply

- high pressure water ٠
- pollution. •

Lea	rning outcome	The learner will:
4. I	4. Know the production, distribution and uses of steam	
Assessment criteria		
The	learner can:	
4.1	describe equipm	ent used for production of steam
	• shell type bo	ilers
	• water tube b	oilers.
4.2	identify the diffe	rences between types of steam
	• wet and dry s	steam
	high pressure	e and low pressure steam
	• flash steam.	

- 4.3 state uses of steam in process industries
 - low pressure steam for heating
 - high pressure steam for power
 - steam for steam ejectors.
- 4.4 describe methods of ensuring efficient distribution and use of steam
 - steam traps
 - lagging
 - pipework expansion loops.
- 4.5 calculate energy required to produce dry steam at 100 °C and 101 kPa pressure
 - sensible heat $Q = c \times m \times (T2 T1)$
 - latent heat $Q = m \times I$
- 4.6 calculate energy given up when dry steam condenses and cools from 100 °C at 101 kPa
 - latent heat $Q = m \times I$
 - sensible heat $Q = m \times c \times (T2 T1)$
- 4.7 describe heat transfer processes within boiler plant
 - conduction through tubes
 - natural and forced convection in fluids
 - radiation from flames and walls.
- 4.8 describe the precautions necessary to minimise the hazards associated with production and distribution of steam
 - scalds and burns
 - static electricity

Learning outcome The learner will:

5. Know the production and uses of air, compressed air and vacuum

Assessment criteria

The learner can:

- 5.1 identify the types of air required in process industries
 - purified
 - compressed
 - atmospheric.
- 5.2 identify the uses of air
 - in pneumatic control systems
 - power for pneumatic tools
 - cleaning lines and vessels.
- 5.3 describe the construction and operation of equipment used to produce compressed air
 - reciprocating compressors
 - centrifugal compressors
- 5.4 describe precautions necessary to minimise hazards associated with the production and supply of compressed air
 - high pressure
 - dust/grit contamination
- 5.5 identify the difference between absolute pressure and gauge pressure
- 5.6 state uses of vacuum in process industries
 - processing heat sensitive materials

- removal of dangerous gases/fumes.
- 5.7 describe methods of producing vacuum
 - reciprocating and rotary vane pumps
 - steam ejectors.
- 5.8 state factors affecting efficient production and distribution of vacuum
 - use of traps and filters
 - corrosion prevention
 - leaks from faulty seals and joints.
- 5.9 describe precautions necessary to minimise hazards associated with production and distribution of vacuum
 - implosion
 - leaks.
- 5.10 use the combined gas equation to solve problems relating to the distribution of compressed air and vacuum

Learning outcome The learner will:

6. Know characteristics and uses of a.c. and d.c. electrical supplies

Assessment criteria

The learner can:

- 6.1 state methods of production of a.c. and d.c. electrical supplies
 - alternators
 - dynamos, batteries, rectification.
- 6.2 state the functions of rectifiers and transformers.
- 6.3 identify the differences between characteristics and uses of a.c. and d.c.
 - a.c. for heating and power
 - d.c. for electrolysis and electroplating.
- 6.4 identify hazards associated with using electricity
 - electric shock
 - burns
 - sparks
 - static electricity.
- 6.5 apply equations to electrical energy problems.

Unit 207 Processing solids in process industries

Unit reference:	M/602/5974
Level:	2
Credit value:	6
GLH:	It is recommended that 40 hours should be allocated for this unit, although patterns of delivery are likely to vary.
Assessment requirements	Multiple Choice
Aim	This unit provides the essential knowledge required for an understanding of the techniques used by industry for the processing of solid materials into intermediate and final products.

Lea	rning outcome	The learner will:
1.	Know the scientific processing of solic	and technological principles associated with I materials
Ass	essment criteria	
The	learner can:	
1.1	describe principl	es of pneumatic and fluidised conveying systems.
1.2	2 state the purposes of industrial size reduction	
1.3	identify forces associated with size reduction	
	• shear	
	 compression 	
	 impact 	
	 attrition 	
1.4	identify the differentiation of solid materials	rences between batch and continuous processing 5.
1.5	describe the prin sedimentation, fi	nciples for separation of solids from liquids by Itration and centrifuging.
1.6	state the factors liquids by sedime	which affect the rate of separation of solids from entation, filtration and centrifuging
	• viscosity, der	nsity and temperature of liquid
	• particle size a	and mass of solid
	• nature of filte	er medium
	pressure and	gravitational effects.
1.7	describe the prir	nciples of solid and liquid extraction.
1.8	state the factors	which affect the rate of solid and liquid extraction
	• particle size	

• solvent use
- solvent temperature
- degree of agitation
- 1.9 describe the principles of drying solids.
- 1.10 describe the factors which affect the rate and process of drying solids
 - humidity
 - vacuum
 - temperature.

Learning outcome	The learner will:
2. Know the construct	tion, operation and application of equipment used
	blid materials
Assessment criteria	
The learner can:	
2.1 identify methods	s of storing solid materials
 silos, bins, ho 	oppers
 bags 	
pallet system	
2.2 describe equipm	ient for transferring solid materials
 conveyors 	
elevators	
 screws nnoumatic co 	(stome
 preumatic system fluidicod cyst 	tome
2.3 identify the diffe	rences between crushing and grinding.
2.4 describe princip	les of construction and operation of size reduction
 iaw crushers 	
 gvratory crus 	shers
 roll crushers 	
hammer mill	S
 ball mills 	
 ultra fine grir 	nders
2.5 state factors affe	ecting product size
2.6 state application	is of size reduction equipment
2.7 describe sequen and classification	icing of size reduction in terms of crushing, grinding n.
2.8 describe purpos	es of particle size classification.
2.9 describe method	ds of size classification for solid materials
 shaking sieve 	es

- rotary sieves
- vibratory sieves.
- 2.10 describe methods of producing uniformly sized particles
 - sintering
 - pelletising
 - briquetting
- 2.11 identify the differences between mixing and blending.
- 2.12 describe construction and operation of equipment used for mixing and blending of solid materials
 - kneading types: Z blade

- planetary mixers
- ribbon mixers
- pug mixers
- tumbler types
- 2.13 describe applications of equipment used for mixing and blending of solid materials
- 2.14 describe principles of construction and operation of equipment used for separation of insoluble solids from liquids
 - batch and continuous sedimentation tanks
 - bed filters
 - Nutsch filters
 - plate and frame filters
 - rotary vacuum filters
 - leaf filters
 - edge filters
 - batch and continuous centrifugal filters.
- 2.15 describe applications of equipment used for separation of insoluble solids from liquids
- 2.16 describe the factors affecting the choice of equipment used for separation of insoluble solids from liquids
- 2.17 identify types of filter media and filter aids.
- 2.18 state purposes of solvent extraction of solids (leaching)
 - to extract a soluble solid product
 - to purify a solid by extraction of soluble impurities.
- 2.19 describe principles of construction and operation of solid/liquid extraction equipment
 - batch mixer settler units
 - counter current units.
- 2.20 describe applications of solid and liquid extraction equipment
- 2.21 describe principles of construction and operation of equipment used for drying of solids
 - tray and tunnel driers
 - pneumatic driers
 - rotary driers
 - spray driers
 - vacuum driers
 - freeze driers
 - drum driers
 - fluidised bed driers

2.22 state common applications of equipment used for drying of solids

Lea	rning outcome The learner will:
3. ł r	Know health and safety aspects associated with processing solid materials
Ass	essment criteria
The	learner can:
3.1	describe precautions to minimise hazards associated with processing solid materials
	moving machinery
	dusts
	pyrophoric materials static electricity
32	 Static electricity describe the precautions necessary to minimise the hazards
5.2	associated with sedimentation, filtration and centrifuging
	mechanical
	vacuum and high pressure
3.3	describe the precautions necessary to minimise the hazards associated with solid/liquid extraction
	flammable solvents
	acids and alkalis
	toxic materials
3.4	describe the precautions necessary to minimise the hazards associated with the drying of solids
	hot and cold surfaces
	static electricity
	dust emissions.

Unit 208 Processing fluids in process industries

Unit reference:	K/602/5987
Level:	2
Credit value:	6
GLH:	It is recommended that 40 hours should be allocated for this unit, although patterns of delivery are likely to vary.
Assessment requirements	Multiple Choice
Aim	This unit provides the essential knowledge required for an understanding of the techniques used by industry for the processing of fluid materials into intermediate and final products

Learning outcome	The learner will:		
 Understand scientific and technological principles associated with the processing of fluids 			
Assessment criteria			
The learner can:			
1.1 describe change	s of state of materials.		
1.2 describe effects	of pressure changes on boiling points of liquids.		
1.3 state principles of	of mixing and blending of fluids.		
1.4 define the terms	.4 define the terms solution, suspension and emulsion		
1.5 state the purpos	5 state the purposes of liquid and liquid extraction		
1.6 describe the prir	describe the principles of liquid and liquid extraction		
1.7 describe terms u	sed in liquid and liquid extraction operations		
 solute 	• solute		
solvent	• solvent		
 solution 	• solution		
extract raffinate	extract reffinete		
• rannale 1.8 state the nurnos	es of gas absorption		
1.9 describe the prir	iciples of gas absorption.		
1.10 identify the diffe	10 identify the differences between chemical and physical absorption.		
1.11 describe effects	of temperature and pressure changes on gas		
solubility.			
1.12 describe the prir distillation	nciples used in the separation of liquids by		
simple distillation	ation		
fractional dis	tillation		

- steam distillation
- vacuum distillation
- 1.13 describe effects of changes of pressure on distillation processes.
- 1.14 define terms used in distillation operations
 - reflux and reflux ratio
 - condensate and residue
 - fractions
 - ancillary equipment.
- 1.15 describe the importance of turbulence in evaporation operations.
- 1.16 identify the differences between evaporation and boiling.
- 1.17 describe effects of changes in pressure on boiling point of liquids.
- 1.18 state the purposes of evaporation operations
 - reduce liquor bulk
 - produce concentrated products
 - produce supersaturated solutions
 - ease fluid handling.
- 1.19 define terms used in crystallisation operations
 - unsaturated solutions
 - saturated solutions
 - supersaturated solutions
- 1.20 describe principles of crystallisation operations
 - cooling
 - evaporation
 - seeding.
- 1.21 identify crystallisation processes from solubility curves.

Lea	rning outcome	The learner will:		
2. I i	2. Know the construction, operation and application of equipment used in the processing of fluids			
Ass	essment criteria			
The	learner can:			
2.1	state methods o	f storing liquid materials		
	• drums			
	• containers			
	 cylindrical 			
	• rectangular t	anks.		
2.2	2 identify methods of storing gases			
	 cylinders 			
	• gas holders			
 tanks and tank farms 				
	 spheres 			
2.3	describe constru and blending of l	iction and operation of equipment used for mixing iquids		
	 impellers 			
	 propellers 			
	 paddle mixer 	S		
	 jet mixers 			
2.4	describe applica	tions of equipment used for mixing and blending of		

- 2.5 describe construction and operation of equipment used for mixing gases
 - baffles
 - fans.
- 2.6 describe applications of equipment used for mixing gases
- 2.7 identify the differences between batch and continuous mixing processes.
- 2.8 describe construction and operation of liquid and liquid extraction equipment
 - batch mixer settler units
 - continuous extraction columns and towers.
- 2.9 describe applications of liquid and liquid extraction equipment
- 2.10 state desirable properties of solvents used in liquid and liquid extraction processes.
- 2.11 state solvents used in extraction processes
- 2.12 describe the importance of solvent recovery.
- 2.13 describe construction and operation of equipment used for gas absorption operations
 - packed columns
 - spray towers
 - centrifugal scrubbers.
- 2.14 describe applications of equipment used for gas absorption operations
- 2.15 describe construction, operation and application of distillation equipment
 - stills
 - plate columns
 - packed columns.
- 2.16 describe applications of distillation equipment
- 2.17 state advantages, disadvantages and applications of distillation equipment
- 2.18 describe construction and operation of equipment used for evaporation operations
 - vertical short tube evaporators
 - natural and forced convection evaporators
 - climbing film long tube evaporators
 - forced circulation evaporators (Oslo)
 - multiple effect evaporators.
- 2.19 describe applications of equipment used for evaporation operations
- 2.20 state advantages and disadvantages of evaporation equipment
- 2.21 describe construction and operation of crystallisation equipment
 - cooling crystallisers
 - evaporative crystallisers
 - vacuum crystallisers.
- 2.22 describe applications of crystallisation equipment
- 2.23 state advantages and disadvantages of crystallisation equipment

Lear	ming outcome The learner will:
з. r f	luids
Ass	essment criteria
The	learner can:
3.1	describe precautions to minimise hazards associated with storage and handling of liquids and gases
	static electricity
	flammable liquids
3.2	• gases above and below atmospheric pressure. describe precautions to minimise hazards associated with mixing and blending operations
	mechanical
	static electricity
3.3	 flammable, explosive, toxic and acidic materials. describe precautions to minimise hazards associated with liquid/liquid extraction operations
	flammable materials
	acids and alkalis
2 4	toxic materials describe processitions to minimise bazards associated with gas
5.4	absorption
	toxic materials
	flammable materials
	environmental contamination
3.5	describe precautions to minimise hazards associated with distillation operations
	 toxic, flammable and explosive materials
	flooding and channelling
	• corrosion
3.6	 pressure and vacuum. describe precautions to minimise hazards associated with evaporation equipment
	• steam
	pressure and vacuum
2 7	 solvent vapours.
3./	crystallisation equipment
	solvent vapours
	steam usage tube blockage
	LUDE DIOCKAGE overloading of agitators
	• Overloading of agitators

Unit 209 Principles of laboratory analysis

Unit reference:	M/602/5991
Level:	2
Credit value:	6
GLH:	It is recommended that 40 hours should be allocated for this unit, although patterns of delivery are likely to vary.
Assessment requirements	Centre Devised
Aim	This unit provides the essential principles for an understanding of the procedures involved in the straightforward laboratory analysis needed to maintain quality in the process industries.

Leai	ning outcome	The learner will:		
1. k	1. Know fundamental items of laboratory equipment			
Ass	Assessment criteria			
The	learner can:			
1.1	identify laborato	ry equipment		
	 beaker 			
	• conical flask			
	 pipette 			
	• pipette filler			
	• burette			
	measuring cylinder			
	• clamp			
	magnetic stirrer			
 conductivity meter and probe 				
	 pH meter and 	1 probe		
	• syringe			
	volumetric fla	ask		
rough balance				
analytical balance				
	• filter funnel			
1 2	• Iller paper			
I.Z	1.2 State uses of laboratory equipment			

Learning outcome The learner will: 2. Know terms commonly used in chemical analysis Assessment criteria The learner can: 2.1 define the terms, solvent, solute and solution.

- 2.2 define the term concentration
 - moles of substance
 - volume of solution.
- 2.3 state the equivalence of the terms, molar, (M), moles per litre, (mol l-1), (mol/l), moles per cubic decimetre, (mol dm-3), (mol/dm3).
- 2.4 define percentage concentration in terms of volume and mass.
- 2.5 define the concentration term grams per litre (g l-1).
- 2.6 state the equivalence of the terms milligrams per litre (mg l-1) and parts per million (ppm).
- 2.7 calculate concentration from a number of moles and a volume.
- 2.8 define the term dilution.
- 2.9 calculate the concentration of diluted solutions.

Lea	ning outcome	The learner will:	
3. l	Jnderstand the pr	inciples of Acid/Base titration	
Ass	essment criteria		
The	learner can:		
3.1	define acid and k	base in terms of hydrogen ions.	
3.2	define pH in tern	ns of hydrogen ion concentration.	
3.3	describe the terr	ms acidic, neutral and alkaline	
	● pH		
	• relative amo	unt of hydrogen	
	• relative amo	unt of hydroxide ions	
3.4	define weak acid	l and weak base.	
3.5	identify names of common acids and corresponding anions		
	hydrochloric/chloride		
	• sulphuric/hyd	drogen sulphate and sulphate	
	• nitric/nitrate		
	• ethanoic/eth	anoate	
	hydrofluoric/	fluoride	
	 methanoic/m 	nethanoate	
	• carbonic/hyd	lrogen carbonate and carbonate	
	• nitrous/nitrit	e	
	 sulphurous/ł 	nydrogen sulphite and sulphite.	
3.6	identify names o	f common bases	
	• sodium hydr	oxide	
 potassium hydroxide 			

- polassium nyuroxi
- calcium hydroxide
- calcium oxide
- ammonia
- sodium carbonate
- sodium hydrogen carbonate
- calcium carbonate.

- 3.7 construct word equations for acid reactions
 - reactive metals
 - metal oxides
 - metal carbonates
 - alkalis.
- 3.8 state ratios in balanced symbol equations.
- 3.9 explain how pH meters are calibrated using standard buffer solutions.
- 3.10 state properties of primary standards in titrimetric analysis.
- 3.11 describe roles of standards in standardisation of laboratory acids and alkalis.
- 3.12 define the terms titre and indicator.
- 3.13 explain how the concentration of acids or alkalis may be found by titration
 - pH meter
 - suitable indicator.

Learning outcome The learner will: 4. Know potential hazards in the use and disposal of laboratory chemicals Assessment criteria The learner can: 4.1 describe main types of laboratory hazards • flammable • oxidising agent corrosive explosive harmful toxic radioactive biohazard • harmful to the environment • carcinogenic/mutagenic 4.2 describe methods of hazard labelling in laboratories • manufacturers' labels orange tape • 4.3 state where to obtain information about hazards MDS leaflets • R and S phrases. 4.4 state where to obtain information about appropriate disposal of laboratory waste 4.5 describe common methods of waste disposal in laboratories • run to waste with plenty of water non-chlorinated waste solvent bottle chlorinated waste solvent bottle • • dedicated waste container (solids/oil/Ag residues etc).

Learning outcome The learner will: 5. Know elements of quality systems in a laboratory **Assessment criteria** The learner can: 5.1 describe ways in which results can be recorded in laboratories electronically • graphically • handwritten in a hard-backed book • 5.2 describe methods of logging samples • directly on computer • on a job sheet • in a hard-backed book • with information corresponding to the label 5.3 describe information used in labelling samples • date • batch • sub-sample number • person taking the sample • sampling point • conditions (environmental samples) some property of the sample measured immediately like • specific gravity code denoting whether it is a process or despatch sample •

Unit 210 Fundamentals of Special processes in process industries

Unit reference:	F/602/5994
Level:	2
Credit value:	6
GLH:	It is recommended that 40 hours should be allocated for this unit, although patterns of delivery are likely to vary.
Assessment requirements	Centre Devised
Aim	Both the individual and industry will benefit from the individuals involved in operations having an appropriate level of understanding of the relevant processes. This unit is concerned with an individual's responsibilities within their operational role and as part of a team and their awareness of health and safety matters. The unit also details the knowledge required of the raw materials and products of the process and their commercial relevance.

Lear	rning outcome	The learner will:		
1. l	1. Understand personal responsibility within overall process operations			
Ass	Assessment criteria			
The learner can:				
1.1	describe the company structure.			
1.2	explain how role	s fit into the organisations		
1.3	describe the mai	n responsibilities of roles.		

1.4 explain the importance of team-working.

Lear	ning outcome	The learner will:		
2. l	2. Understand the main unit operations within processes			
Ass	Assessment criteria			
The	learner can:			
2.1	explain the princ	iple of operation of unit operations.		
2.2	2 state the critical operating parameters for processes.			
2.3	state where ope	rating procedures are located		
2.4	state HSE issues	associated with processes.		

3. Know details of raw materials, intermediate and final products

Assessment criteria

The learner can:

- 3.1 state the requirements for safe storage of raw materials and final products.
- 3.2 describe the procedure(s) to follow in event of spillages.
- 3.3 state the main use(s) of final products.

Learning outcome The learner will:

4. Know commercial issues of processes

Assessment criteria

- 4.1 identify the major customers for products of processes.
- 4.2 identify major competitors
- 4.3 describe factors influencing sales of products

Unit 211 Instrumentation, measurement and control in process industries

Unit reference:	D/602/5999
Level:	2
Credit value:	6
GLH:	It is recommended that 40 hours should be allocated for this unit, although patterns of delivery are likely to vary.
Assessment requirements	Multiple Choice
Aim	This unit provides the candidate with the fundamental operating principles of process plant instrumentation.

Lear	ning outcome	The learner will:
1. k	Know the purpose systems and facto	of instrumentation within industrial process rs that govern its use
Assessment criteria		
The	learner can:	
1.1	describe the role	e of Instrument Technicians
1.2	state the purpos	e of instrumentation and control
1.3	state the main fa and control syste	ctors affecting decisions to install instrumentation ems
	 safety 	
	 efficiency 	
	• cost	
	operability a	nd maintainability.
1.4	describe instrum	ientation terminology
	 accuracy 	
	 range 	
	• span	
	 sensitivity 	
	 live zero 	
1 5	• tolerance.	ound in instruments
1.5		
	• Zero	
	 Spari lipoprity 	
	 intedrity bystorosis 	
	 nysteresis. 	

- 1.6 state the need for instrument calibration
 - Safe Operation of Plant
 - Quality Control
 - Preventative Maintenance.
- 1.7 state factors that affect the accuracy of instruments
 - temperature
 - corrosion
 - stray magnetic fields
 - environment
 - maintenance
 - vibration.
- 1.8 describe the essential elements of measurement systems
 - input
 - transducer/sensor
 - amplifier
 - display
 - output.

2. Know pressure measurements and pressure measuring instruments

Assessment criteria

- 2.1 define the term pressure.
- 2.2 state the SI unit of pressure.
- 2.3 convert pressure units
 - Pa
 - N/m2
 - bar
 - mbar
 - PSI.
- 2.4 identify types of pressure
 - gauge pressure
 - atmospheric pressure
 - absolute pressure
 - differential pressure
 - hydrostatic pressure.
- 2.5 define the term vacuum.
- 2.6 describe the operation of dead weight testers.
- 2.7 describe the operating principles, constructional features and operational ranges of pressure instruments
 - U tube manometer
 - inclined manometer
 - single tube manometer
 - double tube manometer
 - aneroid barometer
 - diaphragm gauge
 - bellows gauge
 - C type Bourdon gauge
 - piezo-electric, resistive and capacitive transducers.
- 2.8 state the common sources of error found in pressure instruments

Lear	ning outcome	The learner will:
3. k i	Know temperature nstruments	e measurements and temperature measuring
Ass	essment criteria	
The	learner can:	
3.1	define the terms	temperature and heat
3.2	2 describe the operating principles, constructional features and operational ranges of temperature instruments	
	• expansion ty	pes – alcohol and mercury thermometers
	 liquid in stee 	l and liquid in glass thermometers
	• solids – bi-m	etallic type
	• electrical – p	latinum resistance, thermocouple types
	• radiation – ir	frared optical pyrometer, radiation pyrometer.
3.3	describe hot jun	ction, cold junction and cold junction
	compensation in	ı thermocouples
3.4	describe the See	ebeck Effect.
3.5	describe the Peltier Effect.	
3.6	state the commo instruments	on sources of error found in temperature

Learning outcome The learner will:				
4. Know level measurement and operation of level measuring instruments				
Assessment criteria	Assessment criteria			
The learner can:	The learner can:			
4.1 describe the operational range	4.1 describe the operating principles, constructional features and operational ranges of common level instruments			
 dip stick sight glass 				
 float operated devices hydrostatic level measurement using differential pressure transmitter 				
 purged dip p 	ipe method			
electrical resistance methods				
capacitance probes				
ultrasonic level methods				
 buoyancy methods 				
 radioactive level measurement 				
 load cells. 				
4.2 state the main s	ources of error in level measuring instruments.			
4.3 define the terms ullage and outage.				

5. Know flow measurement and operation of flow measuring instruments

Assessment criteria

The learner can:

- 5.1 describe laminar flow.
- 5.2 describe turbulent flow.
- 5.3 define volumetric flow rate
- 5.4 define mass flow rate.
- 5.5 describe the operating principles, applications, constructional features and operational ranges of flow measuring instruments
 - positive displacement meters
 - differential pressure head devices venturi, dall tube, orifice plate, pitot tube
 - variable area flow meters
 - inferential turbine
 - electrical electromagnetic, vortex, corriollis.
- 5.6 state the main sources of error in flow measuring instruments.

Learning outcome The learner will:			
6. Know the measurement of viscosity, density and humidity			
Assessment criteria			
The learner of	can:		
6.1 define	viscosity.		
6.2 define the SI unit of viscosity and its common multiples and sub- multiples.			
6.3 describ	be the operating principles of	viscometers	
• anr	nular		
• Rec	boowb		
• Sto	kes (falling sphere)		
• Tor	sion.		
6.4 state a	pplications and sources of er	for for viscometers	
6.5 define	absolute numidity, relative hu	imiaity, dew point	
6.6 define water vapour pressure and saturated water vapour			
6.7 describ	he the operation of hypromet	ers	
• wot and dry hulb			
hair type			
electrical conductivity			
 mirror type 			
• chemical methods (silica gel).			
6.8 define	.8 define density and relative density		
6.9 state the SI unit of density and its common multiples and sub multiples.			
6.10 describe Archimedes' principle.			
6.11 state h	6.11 state how the density of solids can be determined by direct		

6.11 state how the density of solids can be determined by measurement.

6.12 state how the density of liquids is measured

- an SG bottle
- a hygrometer
- continuous gravitometers
- buoyancy transducer.
- 6.13 describe how the density of gas is measured.
- 6.14 describe why temperature readings must be taken in conjunction with density readings

Leai	ning outcome	The learner will:	
7. l	7. Understand instrumentation practice		
Ass	Assessment criteria		
The	learner can:		
7.1	identify orifice pl measurement sit	ate tapping positions for various flow cuations	
	 gas flow mea steam measu slurry measu clean liquids suspended su 	isurement irement rement olids.	
7.2	 explain the operation concentric eccentric 	ation and use of orifice plates	
7.3	 segmental identify the hazards associated with oxygen measurement 		
7.4	 explosion fire asphyxiation explain the impo 	rtance of bursting discs, pressure snubbers,	
7.5	pigtails, lutes and oil filled gauges. 5 describe zone classification		
	Zone 0Zone 1Zone 2		
7.6	describe temper	ature classifications	
	T1T2		
	• T3		
	• T4		
	• T5		
77	 IO. define the term i 	ntrinsic safety	
7.8	describe Seal Po	t and Condensate Chambers	

8. Know open and closed loop control systems

Assessment criteria

- 8.1 state the purposes of control systems
 - to maintain optimum performance at all times during the process by the manipulation of process variables.
 - to ensure process safety.
 - to provide data on the parameters of a process.
- 8.2 describe the essential elements of control systems
 - detecting element
 - measuring element
 - comparing element
 - motor (control) element
 - final correcting element
- 8.3 identify block diagrams of open and closed loop control systems
- 8.4 state the advantages and disadvantages of manual and automatic control
- 8.5 describe simple closed loop systems for pressure temperature level and flow control
- 8.6 describe 3 term control.
- 8.7 describe on/off (2 step) control.

Unit 212 Fundamentals of Processing metals in process industries

Unit reference:	Y/602/6004
Level:	2
Credit value:	6
GLH:	It is recommended that 40 hours should be allocated for this unit, although patterns of delivery are likely to vary.
Assessment requirements	Multiple Choice
Aim	This mandatory unit provides an introduction to the production of iron, steel, aluminium and copper. It outlines the processes from metal ore to finished product, which may be a raw material for further processing in other manufacturing industries. It should be considered as the minimum educational requirement for those who work in the metal producing and metal using industries.

Learning outcome	The learner will:		
1. Know how metals are produced from metal ore			
Assessment criteria			
The learner can:			
1.1 identify metal or	es used to produce iron, aluminium and copper		
• iron:			
o haema	tite - red iron ore Fe2O4		
o magne	tite- magnetic iron ore		
o limonit	e - brown iron ore		
 aluminium: b 	auxite		
• copper: low g	grade sulphide ore.		
1.2 state main featur	res of modern iron blast furnaces		
 water cooled 	steel structure lined with refractory		
 mechanism f 	or charging solids at top of furnace		
 hot air blast a 	and tuyeres for injection of air		
 metal and sla 	ag tapping holes		
• gas extractio	n system.		
1.3 state main featur	res of aluminium reduction cells		
 insulated ste 	el case with a carbon cathode lining		
anode condu	ictor bar with self baking carbon anode		
molten electi	rolyte with solid alumina crust		
 molten alumi 	nium with siphon ladle system.		

- 1.4 state processes used for the manufacture of iron, aluminium and copper from their metal ore
 - iron: reduction of oxide by heat and reducing agent
 - aluminium: electrolysis of fused salts
 - copper: beneficiation of low grade ores.
- 1.5 state main impurities of iron produced from iron ore
 - carbon
 - silicon
 - manganese
 - sulphur
 - phosphorus.

Learning	Learning outcome The learner will:			
2. Know how metals are refined				
Assessr	nent criteria			
The learn	ner can:			
2.1 des ma	scribe main fe inufacture of s	atures of the process and production units for the steel from molten iron		
• • • 2.2 de: ma	Basic Oxyger top blown wi rapid exothe raw materials tilted for tapp measuremen scribe main fe nufacture of s	n Steel making unit ith oxygen and lime rmic chemical reactions s from charging hopper oing removal of slag and temperature nts. atures of the process and production units for the steel from scrap		
•	Electric Arc F oxygen and f roof removal	urnace, roof, electrodes, side walls, hearth, uel injectors, forward and backwards tilting for charging, melt down, oxidation, sampling,		

- roof removal for charging, melt down, oxidation, samplin tapping.
- 2.3 state mechanical properties of high carbon iron
- 2.4 state mechanical properties of low carbon steel
- 2.5 describe main types of production units used for refining of aluminium
- 2.6 state main features of the process for producing copper from ore
 - preparation of ores
 - fire refining
 - electrolytic purification

Learning outcome The learner will: 3. Know how metal are cast

Assessment criteria

Assessment criteria

- 3.1 state main features of continuous casting processes for steel
 - ladles to machine
 - tundish and pouring nozzles
 - mould shape size and lubrication
 - cooling zone
 - exit and straightening
 - cut to length.

- 3.2 describe how continuous casting processes are efficient in the bulk production of steel
 - casting speed
 - continuous process
 - elimination or reduction of primary working.
- 3.3 state main features of ingot casting
 - mould preparation
 - casting bays
 - wide range of shapes
 - casting temperatures
 - cover slag.

Lea	rning outcome	The learner will:	
4. Know how metals are initially shaped			
Ass	Assessment criteria		
The	The learner can:		
4.1 state suitable processing temperatures for primary working metals/alloys			
 steel (typically 1100 to 900 C) copper and alloys (typically 900 to 700 C) aluminium and alloys (typically 700 to 600 C) 			
4.2	4.2 state types of furnace that achieve correct working temperatures for primary working metals		
	 pusher turnace walking beam furnace batch pit furnace rotary furnace 		
4.3	 describe main features of operating primary rolling mills monitor and track supply from reheat furnace to primary mill roll to size and shape according to schedule progress to cut to length and cooling racks 		
4.4	 progress to cut to length and cooling racks. 4.4 state profiles produced by primary rolling mills 		
	squareroundslabs		
	 special profil rails girders 	es: 5/joists	
4.5	channeddescribe the implow flow stree	els. portance for hot working cast metals ss	
	refinement o	f cast structure:	

- o finer grains
- o lower porosity
- improvement in strength
- improvement in ductility.

Lea	rning outcome The learner will:		
5. Know finishing processes for metals Assessment criteria			
			The
5.1	.1 state the main features of finishing hot rolling operations for root section and sheet		
	 rod - supplied with either hot rolled billet or continuous cast billet 		
	 rod - continuous rolling 		
	 rod - discharge into a downcoiler or conveyor system (stelmor) section - ability to produce a wide range of shapes 		
5.2	 sheet - multi-stand producing high quality sheet in coils. state the main features of cold finishing operations for sheet 		
	 annealing lines with controlled atmosphere 		
	cleaning system for surfaces before cold work commences		
	 highly polished work rolls 		
гэ	 repeated operation until required thickness is achieved. 		
5.3	state the main features of cold linishing operations for wire		
	annealing lines with controlled atmosphere		
	Cleaning system for surfaces before cold work commences wire is drawn through multi holed drawing machines		
5.4	state advantages of hot and cold finishing operations		
	 hot: 		
	o rapid reduction		
	 complex linear shapes achievable 		
	 refinement of cast structure 		
	• cold:		
	o increase in strength		
	 close size tolerances possible 		
	 bright finishes 		

Learning outcome	The learner will:	
6. Know the main testing methods for metals		
Assessment criter	a	
The learner can:		
6.1 identify mecha	nical tests	
 strength: toughness: hardness: 6.2 describe non-codefects in meta 	tensile Charpy Brinell, Vickers. estructive tests used to find surface and sub surface als	
 dye penetrant magnetic particle eddy current ultrasonics (subsurface) 		

Unit 215 Fundamentals of Primary working in the steel industry

Unit reference:	H/602/6006
Level:	2
Credit value:	6
GLH:	It is recommended that 40 hours should be allocated for this unit, although patterns of delivery are likely to vary.
Assessment requirements	Centre Devised
Aim	This unit describes the Primary Working of cast steel. Reheating for hot working is described, followed by details of the Primary Rolling process. Hot forging of steel sections is outlined. The rolling of plate and sheet is described.

Know the types of furnaces used to heat steel for Rolling and Forging operations essment criteria learner can: list key properties when selecting cold feed stock for hot working processes • section size • section shape	
 essment criteria learner can: list key properties when selecting cold feed stock for hot working processes section size section shape surface condition 	
 learner can: list key properties when selecting cold feed stock for hot working processes section size section shape surface condition 	
 list key properties when selecting cold feed stock for hot working processes section size section shape surface condition 	
 section size section shape surface condition 	
 section shape surface condition 	
- curface condition	
• surface condition	
chemical analysis.	
describe how cold feed stock is prepared for reheating processes.	
state advantages of using hot feed stock directly from casting processes	
increase in thermal efficiency	
increase in production rate	
 reduction in cooling and heating cracks. 	
describe how feed stock is tracked during the hot working	
processes.	
identify main features of furnaces used for rolling and forging operations	
• pusher	
walking beam.	

- 1.6 state the advantages of walking beam furnaces over pusher furnaces
 - better surface quality
 - gaps between different specifications
 - more even heating of billets
 - furnace flow direction can be reversed.
- 1.7 describe the term soaking pit.
- 1.8 describe how carbonaceous fuels burn to produce heat.
- 1.9 state types of furnace atmospheres that can be produced
 - carbonaceous fuel
 - reducing
 - neutral
 - oxidising.
- 1.10 state factors which affect the thermal efficiency of furnaces
 - insulation
 - size and operation of doors
 - burner design.
- 1.11 describe how the temperature of reheating furnaces is measured and controlled

Leai	rning outcome	The learner will:	
2. k	2. Know the Primary Rolling process		
Ass	essment criteria		
The	learner can:		
2.1	identify main fea	tures of reversing primary mills	
	• mill housing		
	 work rolls 		
	• screw down	mechanism	
	 universal cou 	iplings	
	manipulators	5	
2.2	 input and out 	tput roller tables.	
2.2	identity main lea	tures of continuous mills which produce bliet	
	 roll train wortical and k 	a orizontal ralla	
	vertical and r		
	 twister guide cron shear 	5	
	 run out table 		
2.3	state rolling tem	perature ranges for hot rolling of steel, copper and	
	aluminium.		
2.4	describe how scale is removed from the billet before the first pass.		
2.5	identify roll pass sequences for production of square sections, angles and channels.		
2.6	calculate increas	es in rolling speed for reductions in area.	
2.7	describe cut off r	mechanisms and surface scarfing.	

Lea	rning outcome	The learner will:
3. I	Know the process	for hot forging of steel sections
Ass	essment criteria	
The	learner can:	
3.1	describe the pre forgings.	paration of rolled feedstock for small and medium
3.2	describe the pre	paration of ingots for large pressings and forgings.
3.3	describe the heating of steel for forging.	
3.4	describe main fe equipment.	atures of small, medium and heavy forging
3.5	state forging ten	perature ranges for carbon steels.
3.6	describe the mar	nipulation of steel during forging.
3.7	state products m	nanufactured by forging.
3.8	state improveme manufactured by	ents in mechanical properties of components / forging compared to casting

Learning outco	ome The learner will:			
4. Know the op	4. Know the operation of hot plate and strip mills			
Assessment cr	riteria			
The learner can:				
4.1 state dime	ensions of starting slabs for production of plates.			
4.2 describe the plates.	he surface preparation of starting slabs for production of			
4.3 calculate s	starting slab sizes in relation to finished plate sizes.			
4.4 describe h	now starting slabs are heated up to rolling temperature.			
4.5 describe th	he layout and operation of rolling mills for plates.			
4.6 describe h specification	low the edges of plate are prepared to customer ons.			
4.7 identify en	nd uses for hot rolled plates			
 ships 				
 bridge 	edecks			
• chemic	cal and nuclear plant			
 pressu 	ure vessels			
 hazard 	lous waste storage tanks.			
4.8 identify ma	ain features of hot strip mills.			
4.9 state the s	stages in controlling stock thickness during rolling			
 sensor 	r			
 analysi 	is of signal			
 feedba 	ack and adjustment.			
4.10 describe w	vhy steel strip is cooled after rolling and before coiling.			
4.11 identify ma	ain features of coilers.			
4.12 state appli	ications of hot rolled steel sheet and strip.			

Unit 219 Fundamentals of Metallurgy of iron and steel production

Unit reference:	D/602/6022
Level:	2
Credit value:	6
GLH:	It is recommended that 40 hours should be allocated for this unit, although patterns of delivery are likely to vary.
Assessment requirements	Centre Devised
Aim	This unit explains and describes many of the metallurgical principles involved in the production and processing of iron and steel. It is designed to be suitable for study at level 2 and is further extended at level 3.

	Learning outcome	The learner will:		
	1. Know the metallurgical principles involved in the production of steel from iron ore and from scrap			
	Assessment criteria			
	The learner can:			
	1.1 identify producti	1.1 identify production processes for the manufacture of iron and steel		
	 blast furnace 			
	 direct reduct 	ion of iron		
	 basic oxygen 	n steel making		
	electrical arc	steel making.		
1.2 identity standard methods of testing the quality of metallurgical		a methods of testing the quality of metallurgical		
	carbon conte	ant		
	 ash content 			
	shatter index	ζ		
	• porosity.			
	1.3 state the main ch	nemical reactions occurring in blast furnaces		
	 carbon react 	ing with oxygen to produce heat		
	direct and in	direct reduction of iron oxide		
	reduction of	silicon and manganese oxides		
	 production o 1.4 state the main of 	It slag.		
	process	nemical reactions in the Basic Oxygen Steel making		
	• exothermic r	eaction between oxygen and carbon, silicon,		
	manganese			
	1			

• reactions involving lime oxygen and phosphorus.

- 1.5 state factors which improve thermal efficiency of electric arc melting furnaces
 - ultra high power
 - fuel injection
 - use of electricity and or tonnage oxygen at various stages of the process
 - foaming slags and long arc practice.
- 1.6 state the stages in making steel to specifications
 - melt
 - boil
 - kill
 - trim to specification.

Lea	rning outcome	The learner will:
2. I	Know the chemist	ry of making plain carbon steels
Ass	essment criteria	
The	learner can:	
2.1	describe the ren oxidation phase	noval of carbon, silicon, and manganese during the of steel making.
2.2	identify conditio steel	ns necessary for the removal of phosphorus from
	 highly oxidis excess of lim 	ing ie v tomporature
2.3	• identify conditio	ns necessary for the removal of sulphur from steel
	 reducing excess of lim 	
	 relatively high 	h temperature.
2.4	identify the meta during the oxida	als often present in steel that cannot be removed tion phase of steel making
	• copper	
	• tin	
2.5	 nickel. identify conditio steel 	ns which will reduce the free oxygen content of
	• vacuum trea	tment
	 argon rinse 	
	• addition of d	e-oxidant:
	o silicor	1
	o mang	anese
2.6	o alumii identify factors i chemical analysi	nium. nvolved in achieving close control over the final is of steel
	 rapid chemic 	al analysis
	 controlled ho 	opper additions
	computer co	ntrol system.

- 2.7 identify advantages of argon stirring of molten steel prior to casting
 - uniformity and close control of temperature
 - uniformity of chemical composition throughout the melt.

Learning outcome	The learner will:		
3. Know the process	3. Know the process of solidification of metals		
Assessment criteria			
The learner can:			
3.1 describe the arra	3.1 describe the arrangement of atoms in liquids and solids		
3.2 identify the stage	.2 identify the stages in cooling curves for pure metals.		
3.3 state the stages	3.3 state the stages in the solidification of metals		
creation of a	solid nucleus in a liquid		
growth of the	e solid nucleus within the liquid		
formation of	a solid dendrite		
 growth of the 	e solid dendrite		

- g
- solid dendrites meet to form a solid grain.
 3.4 describe how fine grained and coarse grained metal structures are formed.
- 3.5 describe how equi-axed and columnar grains are formed.
- 3.6 describe production of micro and macro segregation in cast metals.
- 3.7 describe production of micro and macro porosity in cast metals.

Unit reference:	K/602/6024
Level:	2
Credit value:	6
GLH:	It is recommended that 40 hours should be allocated for this unit, although patterns of delivery are likely to vary.
Assessment requirements	Centre Devised
Aim	This unit provides details about the production, processing, properties and applications of aluminium, copper, and zinc, together with the main alloys based upon these metals. Emphasis is then given to the properties and industrial applications of non- ferrous metals and alloys. This unit provides an introduction to non-ferrous metals and alloys for those who work in the non-ferrous metal producing and non-ferrous metal using industries.

Lear	ning outcome	The learner will:
1. k	Know how alumini	um, copper and zinc are produced from ores
Assessment criteria		
The learner can:		
1.1	identify metal or	es used to produce aluminium, copper and zinc.
1.2	describe electrol	ytic extraction of aluminium from bauxite.
1.3	list stages involv	ed in the extraction of copper from lean copper
	ore.	
1.4	describe the pro	duction of zinc by blast furnace smelting.

Leai	ning outcome	The learner will:
2. k	Know how alumini	um, copper and zinc are refined
Assessment criteria		
The learner can:		
2.1	describe electrol	ytic refining of aluminium.
2.2	describe fire-refi	ning and electrolytic refining of copper.
2.3	describe pyrome	tallurgical refining of zinc.

Learning outcome The learner will: 3. Know the processing of non-ferrous metals and alloys **Assessment criteria** The learner can: identify aluminium based light alloys that are processed by casting 3.1 into shape • aluminium / 8% to 12% copper aluminium / 3% copper + 12% zinc • aluminium / 13% silicon aluminium / 5% magnesium. • 3.2 identify aluminium based light alloys that are processed by hot and cold working into shape • aluminium / 4% copper • aluminium / zinc + magnesium + copper. 3.3 identify types of copper based alloys single phase alpha brasses up to 70% copper / 30% zinc • two phase beta brasses in the region of 60% copper / 40% zinc • high tensile strength brasses

- monels
- bronzes.
- 3.4 describe the main features of zinc die casting and titanium forging alloys.

Lear	ning outcome	The learner will:				
4. l	4. Understand the main properties of the widely used non-ferrous metals and alloys					
Ass	Assessment criteria					
The learner can:						
4.1	4.1 compare properties of alloys					
	• density					
	• strength					
	 strength to weight 					
	• cost					
	 aluminium 					
• copper						
	• nickel					
	• titanium					
1.0	• Iron.					
4.2 state typical mechanical properties of non-terrous metals and alloy						
	• pure aluminit	im				
	• aluminium / 4	% copper alloy				
	pure copper					
	 copper based 	d alloys containing:				
	o zinc (b	rasses)				
	o tin (bro	onzes)				

o Beryllium

- pure nickel
- nickel based alloys containing:
 - o copper (monel)
 - o chromium (inconel)
 - molybdenum (hastelloy)
 - o iron (incoloy)
 - o cobalt (stellite)
- pure titanium
- titanium alloys containing:
 - o aluminium
 - o tin (alpha alloys)
 - o vanadium and chromium (beta alloys).
- 4.3 compare common non-ferrous metals and alloys
 - corrosion resistance
 - electrical conductivity
 - service temperature
 - density
 - resistance to fatigue
 - cost
 - Aluminium
 - Al/4%Cu
 - Copper
 - Cu/30%Zn
 - Nickel
 - Titanium

5. Know the main industrial applications of non-ferrous metals and alloys

Assessment criteria

- 5.1 describe uses of aluminium and its alloys
 - beverage cans
 - automotive components
 - electrical power transmission
 - aircraft and aerospace components.
- 5.2 describe uses of copper and its alloys
 - electrical applications
 - pumps
 - valves
 - plumbing parts
 - marine applications.
- 5.3 describe uses of nickel and its alloys
 - gas turbines
 - chemical plants
 - heat exchangers
 - valves and pumps at high temperatures and or in an aggressive environment.

5.4 describe uses of titanium and its alloys

- chemical plant
- marine components
- medical implants
- airframes •
- aero engine components.5.5 describe how zinc is used to protect steels from corrosion

Unit 223 Chemistry for petroleum operations

Unit reference:	R/602/6034
Level:	2
Credit value:	6
GLH:	It is recommended that 40 hours should be allocated for this unit, although patterns of delivery are likely to vary.
Assessment requirements	Multiple Choice
Aim	This unit provides the essential knowledge required for an understanding of the chemical principles involved in manufacturing processes carried out in the petroleum industries.

Lear	ning outcome	The learner will:				
1. K	 Know the structure of atoms, elements, compounds and chemical symbols that represent them 					
Asse	Assessment criteria					
The l	earner can:					
1.1	identify difference and charge.	es between particles in relation to relative mass				
	 electrons 					
	 protons 					
	neutrons					
1.2	describe structures of atoms in terms of sub-atomic particles.					
1.3	identify differences between relative atomic mass and atomic number.					
1.4	identify the chemical symbols for common elements.					
1.5	 identify the differences between elements, compounds and mixtures. 					
1.6	define the term ion .					
1.7	identify difference electron transfer	es between ionic and covalent bonding in terms of and electron sharing.				
1.8	identify the differ bonded compou	rences between properties of ionic and covalently nds.				
1.9	define the term valency.					
1.10	.10 apply the concepts of valency to chemical formulae					
1.11	1.11 identify the formulae of molecules and ions.					
1.12	identify chemical	formulae of compounds				
	 oxides 					

- hydroxides •
- sulphates •
- chlorides
- nitrates
- carbonates •
- sulphides •
- hydrogen carbonates.1.13 define the term formula (molar) mass
- 1.14 calculate formula masses.

Leai	rning outcome	The learner will:					
2. ł	<now fundamenta<="" td=""><td>scientific laws to the construction and use of</td></now>	scientific laws to the construction and use of					
k	balanced chemical equations						
Assessment criteria							
The	learner can:						
2.1	identify the diffe	rences between chemical and physical changes.					
2.2	define the term o	chemical reaction.					
2.3	describe the law proportion.	of conservation of matter and the law of definite					
2.4	define the term stoichiometric quantity.						
2.5	construct balanced chemical equations to represent chemical reactions.						
2.6	calculate the masses of reactants and products from balanced chemical equations.						
2.7	describe the importance of Avogadro's law.						
2.8	identify differences between exothermic and endothermic reactions.						
2.9	state the function of catalysts.						
2.10	10 identify the differences between chemical compounds						
	• acid						
	 alkali 						
	 base 						
	• salt						
2.11	identify chemical	formulae of common chemical compounds					
	• acid						
	• alkali						
	• base						
2 1 2	 Salt construct balance 	and chamical aquations for reactions involving acids					
2.12		ed chemical equations for reactions involving actus					
	 alkalls bases 						
	 Dases carbonates 						
	 hvdrogen cal 	rbonates					
2.13	describe the rela	tionship between pH and acidity/alkalinity.					

- 2.14 define the terms neutralisation and neutral solution.
- 2.15 state the function of common indicators.

Learning outcome The learner will: 3. Know the structure, classification and properties of carbon compounds Assessment criteria The learner can: 3.1 identify the differences between inorganic and organic chemicals. 3.2 describe the structure of hydrocarbon compounds • straight chain • branched chain • ring compounds. 3.3 define the term homologous series. 3.4 state the general formulae for alkanes, akenes and alkynes. 3.5 identify the differences between saturated and unsaturated hydrocarbons. 3.6 identify the differences between molecular and structural formulae • first six alkanes • first three alkenes • ethyne. 3.7 define the term alkyl group 3.8 state common types of alkyl group 3.9 define the term functional group. 3.10 describe the classification of organic compounds in terms of their functional groups alcohols • acids esters halides • amines. 3.11 identify general formulae for functional groups. 3.12 identify the differences between aliphatic and aromatic compounds.

- 3.13 identify aromatic compounds
 - benzene
 - methyl benzene (toluene)
 - dimethylbenzene (xylene).
- 3.14 identify systematic and common names for common organic compounds
Unit 224 Fundamentals of petroleum technology

Unit reference:	K/602/6038	
Level:	2	
Credit value:	6	
GLH:	It is recommended that 40 hours should be allocated for this unit, although patterns of delivery are likely to vary.	
Assessment requirements	Short Answer	
Aim	This unit provides the essential knowledge required for an understanding of oil exploration, reservoir technology and the production, distribution and processing/refining of crude oil and gas.	

Learning outcome	The learner will:			
1. Know the origins of crude oil and gas and the geological formations that contain them				
Assessment criteria				
The learner can:				
1.1 describe the orig	describe the origins of crude oil and gas.			
1.2 describe the prin oil and gas	2 describe the principal types of geological feature that contain crude oil and gas			
1.3 describe how cr	describe how crude oil and gas flow with rock formations.			
1.4 describe feature	describe features relevant to reservoir technology			
 porosity 				
 temperature, pressure, volume 				
 faulting 				
 viscosity 				
phases: liqui	d, gas, emulsion.			

- gravity survey
- drilling of test wells.2.2 compare advantages and disadvantages of exploration on land and sub-sea

Lea	rning outcome The learner will:
3. ł	Know the construction, operating principles and uses of oil and gas
<u> </u>	broduction and distribution systems both on and on shore
	essment criteria
he	learner can:
3.1	describe principal elements of typical well and drilling operations
	drill bit
	drill pipe
	• derrick
	• casing
	• Kelly
	Christmas tree
	 Childs thee production header/collection point
	instrumentation
	geological analysis
	well completion techniques
	data logging
	well testing
	inhibitor injection
	• services/utilities
3.2	describe the construction and principles of operation of principal
	pieces of surface equipment
	oil-gas separator
	OII-water separator
	 test separators docalting unit
	• desailing unit
	• gas scrubhers
3.3	describe principal types of drilling
	vertical
	directional
	• horizontal.
3.4	describe the construction and principles of operation of down hole
	and nodding donkey pumps
3.5	describe the effects of well pressure on production.
3.6	describe principal components of cross country and sub-sea pipeline systems
	pipe design and support
	 pigs and pigging stations
	 pumping/compression stations
ד ר	 storage.
5./	describe principal features of oil and gas tanker ships
	single hull

• double hull

- holds
- refrigerated storage
- pressurised storage.
- 3.8 identify hazards associated with production operations
 - reservoir pressure; blowouts
 - pollution
 - flammable materials
 - toxicity of materials
 - difficulty of evacuation to and from remote areas
 - helicopter ditching and sea survival techniques
 - corrosion

Lea	rning outcome The learner will:			
4. ł	Know the key functions of refineries, associated processing units, heir key products and uses			
Assessment criteria				
The	learner can:			
4.1	describe the construction, key features and operations of refineries			
	reception of crude			
	electrostatic desalting			
	atmospheric distillation			
	 vacuum distillation desulphurisation catalytic conversion alkylation isomerisation 			
tankage/storage				
	blending operations			
4.0	• export of products.			
4.2	and products			
	• naphtha			
	• kerosine			
	• gasoline			
	• gas oil			
	• fuel oil			
	lubricating oil			
	• bitumen			
	• LPG			
	• LNG			

• crude oils – light/medium/heavy and sweet/sour.

Appendix 1

Literacy, language, numeracy and ICT skills development

These qualifications can develop skills that can be used in the following qualifications:

- Functional Skills (England) see www.cityandguilds.com/functionalskills
- Essential Skills (Northern Ireland) see www.cityandguilds.com/essentialskillsni
- Essential Skills Wales (from September 2010).

Appendix 2

Sources of general information

The following documents contain essential information for centres delivering City & Guilds qualifications. They should be referred to in conjunction with this handbook. To download the documents and to find other useful documents, go to the **Centres and Training Providers homepage** on **www.cityandguilds.com**.

Providing City & Guilds qualifications – a guide to centre and

qualification approval contains detailed information about the processes which must be followed and requirements which must be met for a centre to achieve 'approved centre' status, or to offer a particular qualification. Specifically, the document includes sections on:

- The centre and qualification approval process and forms
- Assessment, verification and examination roles at the centre
- Registration and certification of candidates
- Non-compliance
- Complaints and appeals
- Equal opportunities
- Data protection
- Frequently asked questions.

Ensuring quality contains updates and good practice exemplars for City & Guilds assessment and policy issues. Specifically, the document contains information on:

- Management systems
- Maintaining records
- Assessment
- Internal verification and quality assurance
- External verification.

Access to Assessment & Qualifications provides full details of the arrangements that may be made to facilitate access to assessments and qualifications for candidates who are eligible for adjustments in assessment.

The **centre homepage** section of the City & Guilds website also contains useful information such on such things as:

- Walled Garden Find out how to register and certificate candidates on line
- Events Contains dates and information on the latest Centre events
- **Online assessment** Contains information on how to register for GOLA assessments.

City & Guilds **Skills for a brighter future**

www.cityandguilds.com

Useful contacts

UK learners General qualification information	T: +44 (0)844 543 0033 E: learnersupport@cityandguilds.com
International learners General qualification information	T: +44 (0)844 543 0033 F: +44 (0)20 7294 2413 E: intcg@cityandguilds.com
Centres Exam entries, Certificates, Registrations/enrolment, Invoices, Missing or late exam materials, Nominal roll reports, Results	T: +44 (0)844 543 0000 F: +44 (0)20 7294 2413 E: centresupport@cityandguilds.com
Single subject qualifications Exam entries, Results, Certification, Missing or late exam materials, Incorrect exam papers, Forms request (BB, results entry), Exam date and time change	T: +44 (0)844 543 0000 F: +44 (0)20 7294 2413 F: +44 (0)20 7294 2404 (BB forms) E: singlesubjects@cityandguilds.com
International awards Results, Entries, Enrolments, Invoices, Missing or late exam materials, Nominal roll reports	T: +44 (0)844 543 0000 F: +44 (0)20 7294 2413 E: intops@cityandguilds.com
Walled Garden Re-issue of password or username, Technical problems, Entries, Results, GOLA, Navigation, User/menu option, Problems	T: +44 (0)844 543 0000 F: +44 (0)20 7294 2413 E: walledgarden@cityandguilds.com
Employer Employer solutions, Mapping, Accreditation, Development Skills, Consultancy	T: +44 (0)121 503 8993 E: business_unit@cityandguilds.com
Publications Logbooks, Centre documents, Forms, Free literature	T: +44 (0)844 543 0000 F: +44 (0)20 7294 2413

Every effort has been made to ensure that the information contained in this publication is true and correct at the time of going to press. However, City & Guilds' products and services are subject to continuous development and improvement and the right is reserved to change products and services from time to time. City & Guilds cannot accept liability for loss or damage arising from the use of information in this publication.

If you have a complaint, or any suggestions for improvement about any of the services that we provide, email: feedbackandcomplaints@cityandguilds.com

About City & Guilds

City & Guilds is the UK's leading provider of vocational qualifications, offering over 500 awards across a wide range of industries, and progressing from entry level to the highest levels of professional achievement. With over 8500 centres in 100 countries, City & Guilds is recognised by employers worldwide for providing qualifications that offer proof of the skills they need to get the job done.

City & Guilds Group

The City & Guilds Group includes City & Guilds, ILM (the Institute of Leadership & Management, which provides management qualifications, learning materials and membership services), City & Guilds NPTC (which offers land-based qualifications and membership services), City & Guilds HAB (the Hospitality Awarding Body), and City & Guilds Centre for Skills Development. City & Guilds also manages the Engineering Council Examinations on behalf of the Engineering Council.

Copyright

The content of this document is, unless otherwise indicated, © The City and Guilds of London Institute and may not be copied, reproduced or distributed without prior written consent. However, approved City & Guilds centres and candidates studying for City & Guilds qualifications may photocopy this document free of charge and/or include a PDF version of it on centre intranets on the following conditions:

- centre staff may copy the material only for the purpose of teaching candidates working towards a City & Guilds qualification, or for internal administration purposes
- candidates may copy the material only for their own use when working towards a City & Guilds qualification

The *Standard Copying Conditions* (see the City & Guilds website) also apply.

Please note: National Occupational Standards are not © The City and Guilds of London Institute. Please check the conditions upon which they may be copied with the relevant Sector Skills Council.

Published by City & Guilds, a registered charity established to promote education and training

City & Guilds 1 Giltspur Street London EC1A 9DD T +44 (0)844 543 0000 F +44 (0)20 7294 2413 www.cityandguilds.com

City & Guilds **Skills for a brighter future**

www.cityandguilds.com